INDIANCIVILS.COM

Online IAS Academy

PHYSICS - Optional

By Venkanne Stir \& MannpreeithStir

Quantum Mechanics 2015-2019

INDIANCIVILS.COM +91-9000018804

UPSC - PHYSICS Optional - 2015 Questions

1. Obtain an expression for the probability current for the plane wave $\varphi(x, t)=\exp [i(k x-\omega t]$. Interpret your result.
2. Using dimensional analysis, explain why the angular momentum of a particle cannot be λ^{2}.
3. (i) Establish that :

$$
\begin{aligned}
\mathrm{hc} & =1240 \mathrm{eV} . \mathrm{nm} \\
& =1240 \mathrm{KeV} . \mathrm{fm}
\end{aligned}
$$

(ii) The energy levels of a hydrogen atom are give by $E_{n}=\left(\frac{-1}{n^{2}}\right) R_{y d} 1 R_{y d}=h c R$.

Show that $R=1.097 \times 10^{7} \mathrm{~m}^{-1}$.
[10M]
4. Solve the Schrodinger equation for a particle in a three dimensional rectangular potential barrier. Explain the terms degenerate and non-degenerate states in this context.
5. Write the time independent Schrodinger equation for a bouncing ball.
6. Normalized wave function of a particle is given below
$\varphi=N \exp \left(\frac{-x^{2}}{2 a^{2}}+i k x\right)$ Find the expectation value of position.
[10M]
7. A particle trapped in an infinitely deep square well of width a has a wave function
$\varphi=\left(\frac{2}{\pi}\right)^{1 / 2} \sin \left(\frac{\pi x}{a}\right)$. The walls are suddenly separated by infinite distance. Find the probability of the particle having momentum between p and $p+d p$.

UPSC - PHYSICS Optional - 2016 Questions

1. Find the energy, momentum and wavelength of a photon emitted by a hydrogen atom making a direct transition from an excited state with $n=10$ to the ground state. Also find the recoil speed of the hydrogen atom in this process.
2. An electron is confined to move between two rigid walls separated by $10^{-9} \mathrm{~m}$. Compute the de Broglie wavelengths representing the first three allowed energy states of the electron and the corresponding energies.
3. A typical atomic radius is about $5 \times 10^{-15} \mathrm{~m}$ and the energy of β-particle emitted from a nucleus is at most of the order of 1 MeV . Prove on the basis of uncertainty principle that the electrons are not present in nuclei.
[10M]
4. Using uncertainty principle, calculate the size and energy of the ground state of hydrogen atom.
[10M]
5. Solve the Schrodinger equation for a step potential and calculate the transmission and reflection coefficient for the case when the kinetic energy of the particle E_{0} is greater than the potential energy V (i.e., $E_{0}>V$).
[20M]
6. Write down the matrix representation of the three Pauli matrices σ_{x}, σ_{y} and σ_{z}. Prove that these matrices satisfy the following identities:
(i) $\left[\sigma_{x}, \sigma_{y}\right]=2 \mathrm{i} \sigma_{z}$
(ii) $\left[\sigma^{2} \cdot \sigma_{x}\right]=0$
(iii) $(\vec{\sigma} \cdot \vec{A})(\vec{\sigma} \cdot \vec{B})=\vec{A} \cdot \vec{B}+i \vec{\sigma} \cdot(\vec{A} \times \vec{B})$

If \vec{A} and \vec{B} commute with Pauli matrices.
7. Calculate the density of states for an electron moving freely inside a metal with the help of quantum mechanical Schrodinger's equation for free particle in a box.
[10M]

UPSC - PHYSICS Optional - 2017 Questions

1. A beam of 4.0 keV electrons from a source is incident on a target 50.0 cm away. Find the radius of the electron beamspot due to Heisenberg's uncertainty principle.
2. Calculate the lowest energy of an electron confined to move in a 1-dimensional potential well of width 10 nm .
[10M]
3. Evaluate the most probable distance of the electron from nucleus of a hydrogen atom in its 2 p state. What is the probability of finding the electron at this distance ?
[20M]
4. Using Schrodinger equation, obtain the eigenfunctions and eigenvalues of energy for a 1dimensional harmonic oscillator. Sketch the profiles of eigenfunctions for first three energy states.
[20M]
5. Calculate the probability of transmission of an electron of 1.0 eV energy through a potential barrier of 4.0 eV and 0.1 nm width.
[10M]
6. Explain why the square of the angular momentum $\left(L^{2}\right)$ and only one of the components $\left(L_{x}, L_{y}, L_{z}\right)$ of L are regarded as constants of motion.
[15M]

UPSC - PHYSICS Optional - 2018 Questions

1. The wave function of a particle is given as $\varphi(x)=\frac{1}{\sqrt{a}} e^{-|x| / a}$. Find the probability of locating the particle in the range $-a \leq x \leq a$.
[10M]
2. Calculate the zero-point energy of a system consisting of a mass of $10^{-3} \mathrm{~kg}$ connected to a fixed point by a spring which is stretched by $10^{-2} \mathrm{~m}$ by a force of $10^{-1} \mathrm{~N}$. The system is constrained to move only in one direction.
[10M]
3. The general wave functions of harmonic oscillator (one - dimensional) are of the form

$$
\mathrm{u}_{n}(x)=\sum_{k=0}^{\infty} a_{k} y^{k} e^{-y^{2} / 2}
$$

with $y=\sqrt{\frac{m \omega}{n}} x$, and coefficients a_{k} are determined by recurrence relations

$$
a_{k+2}=\frac{2(k-n)}{(k+1)(k+2)} a_{k}
$$

Corresponding energy levels are $E_{n}=\left(n+\frac{1}{2}\right) n \varphi$. Discuss the parity of these wave functions. What happens, if the potential for $x \leq 0$ is infinite (half harmonic oscillator)?
4. Calculate the radius of electron orbit for Li^{++}in ground state.
5. Prove the following identities:
(i) $\left[\hat{p}_{x}, \hat{L}_{y}\right]=\operatorname{in}_{z}$
(ii) $e^{i(\hat{\sigma} \cdot \hat{n})}=\cos \theta+i(\hat{\sigma} \cdot \hat{n}) \sin \theta$
[15M]
6. Which of the following functions is/are acceptable solution(s) of the Schrodinger equation?
(i) $\varphi(x)=A e^{-i k x}+B e^{i k x}$
(ii) $\varphi(x)=A e^{-k x}+B e^{k x}$
(iii) $\varphi(x)=A \sin 3 k x+B \cos 5 k x$
(iv) $\varphi(x)=A \sin 3 k x+B \sin 5 k x$
(v) $\varphi(x)=$ Atankx Explain your answer.
[15M]
7. A bearn of particles of energy 9 eV is incident on a potential step 8 eV high from the left. What percentage of particles will reflect back?
8. Show that for free electron gas, the density of states in three dimensions (3D) varies as $E^{1 / 2}$, and this dependence changes to E^{0} for 2D (quantum well), $E^{-1 / 2}$ for 1D (quantum wire) and δ function for OD (quantum dot).
[15M]

UPSC - PHYSICS Optional - 2019 Questions

1. Show that the mass and linear momentum of a quantum mechanical particle can be given by $m=h /(\lambda v)$ and $p=h / \lambda$, respectively, where h, λ and v are Planck's constant, wavelength and velocity of the particle, respectively. Comment on the wave-particle duality from these relations.
[10M]
2. State and express mathematically the three uncertainty principles of Heisenberg. Highlight the physical significance of these principles in the development of Quantum Mechanics.
[10M]
3. For a free quantum mechanical particle under the influence of a one-dimensional potential, show that the energy is quantized in discrete fashion. How do these energy values differ from those of a linear harmonic oscillator?
[10M]
4. How do you define density of states? Show that the density of states with wave vector less than \vec{k} in a three-dimensional cubic box of volume V can be given by

$$
D(\omega)=\frac{V}{2 \pi^{2}} k^{2}\left(\frac{d k}{d \omega}\right)
$$

In the frequency spectrum between ω and $\omega+d \omega$. Here, assume that the number of modes per unit range of k is $\mathrm{L} /(2 \pi)$, L being the length of each side of the cubic box.
[20M]
5. Define Pauli spin matrices σ_{x}, σ_{y}, and σ_{z}. Using these definitions, prove the following :
(i) $\sigma_{x}^{2}=\sigma_{y}^{2}=\sigma_{z}^{2}=1$
(ii) $\sigma_{x} \sigma_{y}=i \sigma_{z} ; \sigma_{z} \sigma_{x}=i \sigma_{y} ; \sigma_{y} \sigma_{z}=i \sigma_{x}$
6. Define angular momentum of a particle and find out the three components of the angular momentum operator $\hat{L}^{2}=-h^{2}\left[r^{2} \Delta^{2}-\frac{\partial}{\partial r}\left(r^{2} \frac{\partial}{\partial r}\right)\right]$

Prove that the operator \hat{L}^{2} can also be expressed as

$$
\begin{equation*}
\hat{L}^{2}=-h^{2}\left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta}\left(\sin \theta \frac{\partial}{\partial \theta}\right)+\frac{1}{\sin ^{2} \theta} \frac{\partial^{2}}{\partial \varnothing^{2}}\right] \tag{20M}
\end{equation*}
$$

In spherical polar coordinates (r, θ, \varnothing).
7. Write down the Hamiltonian operator for a liner harmonic oscillator. Show that the energy eigenvalue of the same can be given by $E_{n}=\left(n+\frac{1}{2}\right) h \omega_{0}$ at energy state n with ω_{0} being the natural frequency of vibration of the linear Gaussian form.

INDIANCIVILS.COM An online IAS Academy

ONLINE LIVE COURSES WE OFFER:

1.MATHEMATICS - OPTIONAL 2.TELUGU LITERATURE -OPTIONAL 3. PHYSICS OPTIONAL 4. ELECTRICAL OPTIONAL

Subscribe to our youtube channel: INDIANCIVLS.COM E-mail : info@indiancivils.com Phone : +91-9000018804 / 9000018827
Facebook : https://www.facebook.com/indiancivilsdotcom

