INDIANCIVILS.COM Online IAS Academy

PHYSICS - Optional

By Venkanna Sir & Manpreeth Sir

Quantum Mechanics 2015 - 2019

INDIANCIVILS.COM +91-9000018804

UPSC – PHYSICS Optional – 2015 Questions

- **1.** Obtain an expression for the probability current for the plane wave $\varphi(x, t) = \exp[i(kx \omega t)]$. Interpret your result. [10M]
- **2.** Using dimensional analysis, explain why the angular momentum of a particle cannot be λ^2 .

[10M]

[10M]

3. (i) Establish that :

hc = 1240 eV.nm

= 1240 KeV.fm

(ii) The energy levels of a hydrogen atom are give by $E_n = \left(\frac{-1}{n^2}\right) R_{yd}$ $1R_{yd} = hcR$.

Show that $R = 1.097 \times 10^7 m^{-1}$.

- 4. Solve the Schrodinger equation for a particle in a three dimensional rectangular potential barrier.Explain the terms degenerate and non-degenerate states in this context.[30M]
- 5. Write the time independent Schrodinger equation for a bouncing ball. [10M]
- 6. Normalized wave function of a particle is given below

$$\varphi = Nexp\left(\frac{-x^2}{2a^2} + ikx\right)$$
 Find the expectation value of position. [10M]

7. A particle trapped in an infinitely deep square well of width a has a wave function

 $\varphi = \left(\frac{2}{\pi}\right)^{1/2} \sin\left(\frac{\pi x}{a}\right)$. The walls are suddenly separated by infinite distance. Find the probability of the particle having momentum between p and p + dp. [10M]

UPSC – PHYSICS Optional – 2016 Questions

- 1. Find the energy, momentum and wavelength of a photon emitted by a hydrogen atom making a direct transition from an excited state with n = 10 to the ground state. Also find the recoil speed of the hydrogen atom in this process. [10M]
- 2. An electron is confined to move between two rigid walls separated by 10^{-9} m. Compute the de Broglie wavelengths representing the first three allowed energy states of the electron and the corresponding energies. [10M]
- **3.** A typical atomic radius is about 5×10^{-15} m and the energy of β -particle emitted from a nucleus is at most of the order of 1 MeV. Prove on the basis of uncertainty principle that the electrons are not present in nuclei. [10M]

- Using uncertainty principle, calculate the size and energy of the ground state of hydrogen atom. [10M]
- 5. Solve the Schrodinger equation for a step potential and calculate the transmission and reflection coefficient for the case when the kinetic energy of the particle E_0 is greater than the potential energy V (i.e., $E_0 > V$). [20M]
- 6. Write down the matrix representation of the three Pauli matrices σ_x , σ_y and σ_z . Prove that these matrices satisfy the following identities:
- (i) $[\sigma_x, \sigma_y] = 2i \sigma_z$
- (ii) $[\sigma^2, \sigma_x] = 0$
- (iii) $(\vec{\sigma}.\vec{A})(\vec{\sigma}.\vec{B}) = \vec{A}.\vec{B} + i\vec{\sigma}.(\vec{A}\times\vec{B})$
- If \vec{A} and \vec{B} commute with Pauli matrices.

[20M]

7. Calculate the density of states for an electron moving freely inside a metal with the help of quantum mechanical Schrodinger's equation for free particle in a box. [10M]

UPSC – PHYSICS Optional – 2017 Questions

- **1.** A beam of 4.0 keV electrons from a source is incident on a target 50.0 cm away. Find the radius of the electron beamspot due to Heisenberg's uncertainty principle. [10M]
- 2. Calculate the lowest energy of an electron confined to move in a 1-dimensional potential well of width 10 nm. [10M]
- **3.** Evaluate the most probable distance of the electron from nucleus of a hydrogen atom in its 2p state. What is the probability of finding the electron at this distance ? [20M]
- Using Schrodinger equation, obtain the eigenfunctions and eigenvalues of energy for a 1dimensional harmonic oscillator. Sketch the profiles of eigenfunctions for first three energy states. [20M]
- **5.** Calculate the probability of transmission of an electron of 1.0 eV energy through a potential barrier of 4.0 eV and 0.1 nm width. [10M]
- 6. Explain why the square of the angular momentum (L^2) and only one of the components (L_x, L_y, L_z) of *L* are regarded as constants of motion. [15M]

UPSC – PHYSICS Optional – 2018 Questions

- 1. The wave function of a particle is given as $\varphi(x) = \frac{1}{\sqrt{a}}e^{-|x|/a}$. Find the probability of locating the particle in the range $-a \le x \le a$. [10M]
- 2. Calculate the zero-point energy of a system consisting of a mass of 10^{-3} kg connected to a fixed point by a spring which is stretched by 10^{-2} m by a force of 10^{-1} N. The system is constrained to move only in one direction. [10M]
- 3. The general wave functions of harmonic oscillator (one dimensional) are of the form

$$u_n(x) = \sum_{k=0}^{\infty} a_k y^k e^{-y^2/2k}$$

with $y = \sqrt{\frac{m\omega}{n}} x$, and coefficients a_k are determined by recurrence relations

$$a_{k+2} = \frac{2(k-n)}{(k+1)(k+2)} a_k$$

Corresponding energy levels are $E_n = \left(n + \frac{1}{2}\right)n\varphi$. Discuss the parity of these wave functions. What happens, if the potential for $x \le 0$ is infinite (half harmonic oscillator)?

[10M]

- **4.** Calculate the radius of electron orbit for Li^{++} in ground state. [10M]
- **5.** Prove the following identities :

(i)
$$[\hat{p}_x, \hat{L}_y] = in\hat{p}_z$$

(ii) $e^{i(\hat{\sigma}.\hat{n})} = \cos\theta + i(\hat{\sigma}.\hat{n})\sin\theta$ [15M]

6. Which of the following functions is/are acceptable solution(s) of the Schrodinger equation?

(i)
$$\varphi(x) = Ae^{-ikx} + Be^{ikx}$$

(ii)
$$\varphi(x) = Ae^{-kx} + Be^{kx}$$

(iii) $\varphi(x) = A \sin 3kx + B \cos 5kx$

(iv)
$$\varphi(x) = A \sin 3kx + B \sin 5kx$$

- (v) $\varphi(x) = Atankx$ Explain your answer. [15M]
- 7. A bearn of particles of energy 9 eV is incident on a potential step 8 eV high from the left. What percentage of particles will reflect back? [15M]

8. Show that for free electron gas, the density of states in three dimensions (3D) varies as $E^{1/2}$, and this dependence changes to E^0 for 2D (quantum well), $E^{-1/2}$ for 1D (quantum wire) and δ function for OD (quantum dot). [15M]

UPSC – PHYSICS Optional – 2019 Questions

- 1. Show that the mass and linear momentum of a quantum mechanical particle can be given by $m = h/(\lambda v)$ and $p = h/\lambda$, respectively, where h, λ and v are Planck's constant, wavelength and velocity of the particle, respectively. Comment on the wave-particle duality from these relations. [10M]
- **2.** State and express mathematically the three uncertainty principles of Heisenberg. Highlight the physical significance of these principles in the development of Quantum Mechanics.

[10M]

- **3.** For a free quantum mechanical particle under the influence of a one-dimensional potential, show that the energy is quantized in discrete fashion. How do these energy values differ from those of a linear harmonic oscillator? [10M]
- 4. How do you define density of states? Show that the density of states with wave vector less than \vec{k} in a three-dimensional cubic box of volume V can be given by

$$D(\omega) = \frac{V}{2\pi^2} k^2 \left(\frac{dk}{d\omega}\right)$$

In the frequency spectrum between ω and $\omega + d\omega$. Here, assume that the number of modes per unit range of k is $L/(2\pi)$, L being the length of each side of the cubic box.

[20M]

5. Define Pauli spin matrices σ_x , σ_y , and σ_z . Using these definitions, prove the following :

(i)
$$\sigma_x^2 = \sigma_y^2 = \sigma_z^2 = 1$$

(ii) $\sigma_x \sigma_y = i \sigma_z$; $\sigma_z \sigma_x = i \sigma_y$; $\sigma_y \sigma_z = i \sigma_x$ [15M]

6. Define angular momentum of a particle and find out the three components of the angular momentum operator $\hat{L}^2 = -h^2 \left[r^2 \Delta^2 - \frac{\partial}{\partial r} \left(r^2 \frac{\partial}{\partial r} \right) \right]$

Prove that the operator \hat{L}^2 can also be expressed as

$$\hat{L}^2 = -h^2 \left[\frac{1}{\sin \theta} \frac{\partial}{\partial \theta} \left(\sin \theta \frac{\partial}{\partial \theta} \right) + \frac{1}{\sin^2 \theta} \frac{\partial^2}{\partial \phi^2} \right]$$

In spherical polar coordinates (r, θ, ϕ) .

[20M]

7. Write down the Hamiltonian operator for a liner harmonic oscillator. Show that the energy eigenvalue of the same can be given by $E_n = \left(n + \frac{1}{2}\right)h\omega_0$ at energy state *n* with ω_0 being the natural frequency of vibration of the linear Gaussian form. [15M]

INDIANCIVILS.COM - PHYSICS OPTIONAL BY VENKANNA SIR & MANPREET SIR

INDIANCIVILS.COM

An online IAS Academy

ONLINE LIVE COURSES WE OFFER:

MATHEMATICS - OPTIONAL TELUGU LITERATURE -OPTIONAL PHYSICS OPTIONAL ELECTRICAL OPTIONAL

Subscribe to our youtube channel: INDIANCIVLS.COM E-mail : info@indiancivils.com Phone : +91-9000018804 / 9000018827 Facebook : https://www.facebook.com/indiancivilsdotcom