INDIANCIVIS.COM Online IAS Academy

Mathematics-Optional

By Venkanna Sir and Satya Sir

Numerical Methods & Computer Programming 2013 - 2021

INDIANCIVILS.COM +91-9000018804

UPSC – MATHEMATICS optional – 2013 Questions

1. In an examination, the number of students who obtained marks between certatin limits were given in the following table:

Marks	30 - 40	40 - 50	50 - 60	60 - 70	70 - 80
No. of Students	31	42	51	35	31

Using Newton forward interpolation formula, find the number of students whose marks lie between 45 and 50. [10M]

- 2. Develop an algorithm for Newton Raphson mehod to solve f(x) = 0 starting with initial iterate x_0 , n be the number of iterations allowed, cps be the prescribed relative error and delta be the prescribed lower bound for f'(x). [20M]
- 3. Use Euler's method with step size h = 0.15 to compute the approximate value of y(0.6), correct up to five decimal places from the initial value problem

$$y' = x(y+x) - 2$$

$$y(0) = 2$$

4. The velocity of a train which starts from rest is given in the following table. The time is in minutes and velocity is in km/hour.

t	2	4	6	8	10	12	14	16	18	20
v	16	28.8	40	46.4	51.2	32.0	17.6	8	3.2	0

Estimate approximately the total distance run in 30 minutes by using composite Simpson's $\frac{1}{3}$ rule. [15M]

UPSC – MATHEMATICS optional – 2014 Questions

1. Find the solution of system

$$10x_1 - 2x_2 - x_3 - x_4 = 3$$

-2x₁ + 10x₂ - x₃ - x₄ = 15
-x₁ - x₂ + 10x₃ - 2x₄ = 27
-x₁ - x₂ - 2x₃ + 10x₄ = -9

Using Gauss-Seidel method (make four iterations).

[15M]

[15M]

2. Solve the system of equations

$$2x_1 - x_2 = 7$$

-x_1 + 2x_2 - x_3 = 1
-x_2 + 2x_3 = 1 Using Gauss-Seidel iteration method (Perform three iterations)

- 2. Apply Newton-Raphson method to determine a root of the equation $\cos x xe^x = 0$ correct up to four decimal places. [10M]
- 3. Use five subintervals to integrate $\int_0^1 \frac{dx}{1+x^2}$ using trapezoidal rule.
- 4. Use only AND and OR logic gates to construct a logic circuit for the Boolean expression

$$z = xy + uv.$$
[10M]

5.	Use	Runge-Kutta	formula	of	fourth	order	to	find	the	value	of	у	at	x = 0.8,
	where $\frac{dy}{dx}$	$\frac{y}{x} = \sqrt{x + y}, y(x + y)$	(0.4) = 0.4	41. 7	Fake the	step lei	ngth	h = 0).2.					[20M]
6.	Draw a	flowchart for S	Simpson's	one-	-third rul	e.								[15M]

- 6. Draw a flowchart for Simpson's one-third rule.
- 7. For any Boolean variables x and y, show that x + xy = x.

UPSC – MATHEMATICS optional – 2015 Questions

- 1. Find the principal (or canonical) disjunctive normal form in three variables p, q, r for the Boolean expression $((p \land q) \rightarrow r) \lor ((p \land q) \rightarrow -r)$. Is the given Boolean expression a contradiction or a tautology? [10M]
- 2. Find the Lagrange interpolating polynomial that fits the following data:

[20M]

[15M]

x	$\overline{\cdot}$	-1	2	3	4
f(x)	÷	-1	11	31	69

Find f(1.5)

3. Solve the initial value problem $\frac{dy}{dx} = x(y - x)$, y(2) = 3 in the interval [2, 2.4] using the Runge-Kutta fourth-order method with step size h = 0.2. [15M]

[10M]

UPSC – MATHEMATICS optional – 2016 Questions

1. Convert the following decimal numbers to equivalent binary and hexadecimal numbers:

(i) 4096 (ii) 0.4375 (iii) 2048.0625

- 2. Let $f(x) = e^{2x} \cos 3x$, for $x \in [0, 1]$. Estimate the value of f(0.5) using Lagrange interpolating polynomial of degree 3 over the nodes x = 0, x = 0.3, x = 0.6 and x = 1. Also, compute the error bound over the interval [0, 1] and the actual error E(0.5). [20M]
- 3. For an integral $\int_{-1}^{1} f(x) dx$, show that the two-point Gauss quadrature rule is given by $\int_{-1}^{1} f(x) dx = f\left(\frac{1}{\sqrt{3}}\right) + f\left(-\frac{1}{\sqrt{3}}\right)$, Using this rule, estimate $\int_{2}^{4} 2xe^{x} dx$. [15M]
- 4. Let A, B, C be Boolean variables, \overline{A} denote complement of A, A + B is an expression for A OR B and A. B is an expression for A AND B. Then simplify the following expression and draw a block diagram of the simplified expression and draw a block diagram of the simplified expression, using AND and OR gates.

A.
$$(A + B + C)$$
. $(\overline{A} + B + C)$. $(A + \overline{B} + C)$. $(A + B + \overline{C})$. [15M]

UPSC – MATHEMATICS optional – 2017 Questions

1. Explain the main steps of the Gauss-Jordan method and apply this method to find the inverse of the matrix

- 2. Write the Boolean expression z(y+z)(x+y+z) in its simplest form using Boolean postulate rules. Mention the rules used during simplification. Verify your result by constructing the truth table for the given expression and for its simplest form. [10M]
- **3**. For given equidistant values u_{-1}, u_0, u_1 and u_2 , a value is interpolated by Lagrange's formula. Show that it may be written in the form

$$u_x = yu_0 + xu_1 + \frac{y(y^2 - 1)}{3!} \Delta^2 u_{-1} + \frac{x(x^2 - 1)}{3!} \Delta^2 u_0, \text{ where } x + y = 1.$$
 [15M]

4. Derive the formula

$$\int_{a}^{b} y \, dx = \frac{3h}{8} [(y_0 + y_n) + 3(y_1 + y_2 + y_4 + y_5 + \dots + y_{n-1}) + 2(y_3 + y_6 + \dots + y_{n-3})]$$

Is there any restriction on n? State that condition. What is the error bound in the case of Simpson's $\frac{3}{8}$ rule? [20M]

[10M]

Write an algorithm in the form of a flow chart for Newton-Raphson method. Describe the cases of failure of this method. [15M]

UPSC – MATHEMATICS optional – 2018 Questions

1. Using Newton's forward difference formula find the lowest degree polynomial u_x when it is given that $u_1 = 1, u_2 = 9, u_3 = 25, u_4 = 55$ and $u_5 = 105$. [10M]

<u> </u>	
1.	

Time	2	4	6	8	10	12	14	16	18	20
(minutes)										
Speed	10	18	25	29	32	20	11	5	2	8.5
(Km/h)										

Starting from rest in the beginning, the speed (in Km/h) of a train at different times (in minutes) is given by the above table:

Using Simpson's $\frac{1}{3}rd$ rule, find the approximate distance travelled (*in Km*) in 20 minutes from the beginning. [10M]

- **3.** Find the equivalent of numbers given in a specified number system to the system mentioned against them
 - (i) (111011.101)₂ to decimal system
 - (ii) $(1000111110000.00101100)_2$ to hexadecimal system
 - (iii) $(C4F2)_{16}$ to decimal system
 - (iv) $(418)_{10}$ to binary system
- 4. Find the values of the constants a, b, c such that the quadrature formula $\int_0^h f(x)dx = h\left[af(0) + bf\left(\frac{h}{3}\right) + cf(h)\right]$ is exact for polynomials of as high degree as possible, and hence find the order of the truncation error. [15M]
- **5.** Simplify the Boolean expression: $(a + b) \cdot (\overline{b} + c) + b \cdot (\overline{a} + \overline{c})$ by using the laws of Boolean algebra. From its truth table write it in minterm normal form. [15M]

[15M]

UPSC – MATHEMATICS optional – 2019 Questions

- 1. Using differentials, find an approximate value of f(4.1, 4.9) where $f(x, y) = (x^3 + x^2 y)^{\frac{1}{2}}$. [15M]
- 2. Apply Newton-Raphson method, to find a real root of transcendental equation $x \log_{10} x = 1.2$, correct to three decimal places. [10M]
- 3. Using Runge-Kutta method of fourth order, solve $\frac{dy}{dx} = \frac{y^2 x^2}{y^2 + x^2}$ with y(0) = 1 at x = 0.2. Use four decimal places for calculation and step length 0.2. [10M]
- 4. Draw a flow chart and write a basic algorithm (in FORTRAN/C/C⁺) for evaluating $y = \int_0^6 \frac{dx}{1+x^2}$ using Trapezoidal rule. [10M]
- 5. Find the equivalent numbers given in a specified number to the system mentioned against them:
 - (i) Integer 524 in binary system.
 - (ii) 101010110101.101101011 to octal system.
 - (iii) decimal number 5280 to hexadecimal system.
 - (iv) Find the unknown number $(1101.101)_8 \rightarrow (?)10$.
- 6. Given the Boolean expression $X = AB + ABC + A\overline{B}\overline{C} + A\overline{C}$
 - (i) Draw the logical diagram for the expression.
 - (ii) Minimize the expression
 - (iii) Draw the logical diagram for the reduced expression.

UPSC – MATHEMATICS optional – 2020 Questions

- 1. Show that the equation: $f(x) = \cos \frac{\pi(x+1)}{8} + 0.148x 0.9062 = 0$ has one root in the interval (-1, 0) and one in (0, 1). Calculate the negative root correct to four decimal places using Newton-Raphson method. [10M]
- 2. Let $g(w, x, y, z) = (w + x + y)(x + \overline{y} + z)(w + \overline{y})$ be a Boolean function. Obtain the conjunctive normal form for g(w, x, y, z). Also express g(w, x, y, z) as a product of maxterms.

[10M]

[15M]

thome

[15M]

4x + y + 2z = 43. For the solution of the system of equations: 3x + 5y + z = 7x + y + 3z = 3

Set up the Gauss-Seidel iterative scheme and iterate three times starting with the initial vector $X^{(0)} = 0$. Also find the exact solutions and compare with the iterated solutions. [15M]

- **4.** Find a quadrature formula $\int_0^1 f(x) \frac{dx}{\sqrt{x(1-x)}} = \alpha_1 f(0) + \alpha_2 f\left(\frac{1}{2}\right) + \alpha_3 f(1)$ which is exact for polynomials of highest possible degree. Then use the formula to evaluate $\int_0^1 \frac{dx}{\sqrt{x-x^3}}$ (correct up to three decimal places). [20M]
- 5. Write the three point Lagrangian interpolating polynomial relative to the points $x_0, x_0 + \varepsilon$ and x_1 . Then by taking the limit $\varepsilon \to 0$, establish the relation [15M]

$$f(x) = \frac{(x_1 - x)(x + x_1 - 2x_0)}{(x_1 - x_0)^2} f(x_0) + \frac{(x - x_0)(x_1 - x)}{(x_1 - x_0)} f'(x_0) + \frac{(x - x_0)^2}{(x_1 - x_0)} f(x_1) + E(x)$$

Where $E(x) = \frac{1}{6}(x - x_0)^2(x - x_1)f'''(\xi)$

is the error function and min. $(x_0, x_0 + \varepsilon, x_1) < \xi \max(x_0, x_0 + \varepsilon, x_1)$

- 6. Given the Boolean expression $X = AB + ABC + A\overline{B}\overline{C} + A\overline{C}$
 - (i) Draw the logical diagram for the expression.
 - (ii) Minimize the expression
 - (iii) Draw the logical diagram for the reduced expression.

[15M]

UPSC – MATHEMATICS optional – 2021 Questions

- 1. Find a positive root of the equation 3x = 1 + cosx by a numerical technique using initial values $0, \frac{\pi}{2}$; and further improve the result using Newton-Raphson method correct to 8 significant figures. [10M]
- **2.** Convert $(3798 \cdot 3875)_{10}$ into octal and hexadecimal equivalents. [05M]
- **3.** Obtain the principal conjunctive normal form of $(\exists P \to R) \land (Q \leftrightarrows P)$. **[05M]**

x	у	Ζ	F(x, y, z)
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

4. Obtain the Boolean function F(x, y, z) based on the table given below. Then simplify F(x, y, z) and draw the corresponding GATE network: [15M]

5. Solve the system of equations

$$3x_1 + 9x_2 - 2x_3 = 11$$

$$4x_1 + 2x_2 + 13x_3 = 24$$

$$4x_1 - 2x_2 + x_3 = -8$$

Correct up to 4 significant figures by using Gauss-Seidel method after verifying whether the method is applicable in your transformed form of the system. [15M]

6. Derive Newton's backward difference interpolation formula and also do error analysis. [15M]