INDIANCIULLSCOM

Online IAS Academy

Mathematics-Optional

 By Venkanna Sir and Satya SirNumerical Methods \& Computer Programming 2013-2021

INDIANCIVILS.COM +91-9000018804

UPSC - MATHEMATICS optional - 2013 Questions

1. In an examination, the number of students who obtained marks between certatin limits were given in the following table:

Marks	$30-40$	$40-50$	$50-60$	$60-70$	$70-80$
No. of Students	31	42	51	35	31

Using Newton forward interpolation formula, find the number of students whose marks lie between 45 and 50.
[10M]
2. Develop an algorithm for Newton - Raphson mehod to solve $f(x)=0$ starting with initial iterate x_{0}, n be the number of iterations allowed, cps be the prescribed relative error and delta be the prescribed lower bound for $f^{\prime}(x)$.
[20M]
3. Use Euler's method with step size $h=0.15$ to compute the approximate value of $y(0.6)$, correct up to five decimal places from the initial value problem

$$
\begin{aligned}
& y^{\prime}=x(y+x)-2 \\
& y(0)=2
\end{aligned}
$$

4. The velocity of a train which starts from rest is given in the following table. The time is in minutes and velocity is in km/hour.

t	2	4	6	8	10	12	14	16	18	20
v	16	28.8	40	46.4	51.2	32.0	17.6	8	3.2	0

Estimate approximately the total distance run in 30 minutes by using composite Simpson's $\frac{1}{3}$ rule.

UPSC - MATHEMATICS optional - 2014 Questions

1. Find the solution of system

$$
\begin{aligned}
10 x_{1}-2 x_{2}-x_{3}-x_{4} & =3 \\
-2 x_{1}+10 x_{2}-x_{3}-x_{4} & =15 \\
-x_{1}-x_{2}+10 x_{3}-2 x_{4} & =27 \\
-x_{1}-x_{2}-2 x_{3}+10 x_{4} & =-9
\end{aligned}
$$

Using Gauss-Seidel method (make four iterations).
2. Solve the system of equations
[15M]

$$
\begin{aligned}
2 x_{1}-x_{2} & =7 \\
-x_{1}+2 x_{2}-x_{3} & =1 \\
-x_{2}+2 x_{3} & =1 \text { Using Gauss-Seidel iteration method (Perform three iterations) }
\end{aligned}
$$

2. Apply Newton-Raphson method to determine a root of the equation $\cos x-x e^{x}=0$ correct up to four decimal places.
3. Use five subintervals to integrate $\int_{0}^{1} \frac{d x}{1+x^{2}}$ using trapezoidal rule.
4. Use only AND and OR logic gates to construct a logic circuit for the Boolean expression $z=x y+u v$.
[10M]
5. Use Runge-Kutta formula of fourth order to find the value of y at $x=0.8$, where $\frac{d y}{d x}=\sqrt{x+y}, y(0.4)=0.41$. Take the step length $h=0.2$.
6. Draw a flowchart for Simpson's one-third rule.
7. For any Boolean variables x and y, show that $x+x y=x$.

UPSC - MATHEMATICS optional - 2015 Questions

1. Find the principal (or canonical) disjunctive normal form in three variables p, q, r for the Boolean expression $((p \wedge q) \rightarrow r) \vee((p \wedge q) \rightarrow-r)$. Is the given Boolean expression a contradiction or a tautology?
2. Find the Lagrange interpolating polynomial that fits the following data:
[20M]

x	$:$	-1	2	3	4
$f(x)$	$:$	-1	11	31	69

Find $f(1.5)$
3. Solve the initial value problem $\frac{d y}{d x}=x(y-x), y(2)=3$ in the interval $[2,2.4]$ using the RungeKutta fourth-order method with step size $h=0.2$.
[15M]

UPSC - MATHEMATICS optional - 2016 Questions

1. Convert the following decimal numbers to equivalent binary and hexadecimal numbers:
(i) 4096
(ii) 0.4375
(iii) 2048.0625
[10M]
2. Let $f(x)=e^{2 x} \cos 3 x$, for $x \in[0,1]$. Estimate the value of $f(0.5)$ using Lagrange interpolating polynomial of degree 3 over the nodes $x=0, x=0.3, x=0.6$ and $x=1$. Also, compute the error bound over the interval $[0,1]$ and the actual error $\mathrm{E}(0.5)$.
[20M]
3. For an integral $\int_{-1}^{1} f(x) d x$, show that the two-point Gauss quadrature rule is given by $\int_{-1}^{1} f(x) d x=f\left(\frac{1}{\sqrt{3}}\right)+f\left(-\frac{1}{\sqrt{3}}\right)$, Using this rule, estimate $\int_{2}^{4} 2 x e^{x} d x$.
[15M]
4. Let $\mathrm{A}, \mathrm{B}, \mathrm{C}$ be Boolean variables, $\overline{\mathrm{A}}$ denote complement of $\mathrm{A}, \mathrm{A}+\mathrm{B}$ is an expression for A OR B and A.B is an expression for A AND B. Then simplify the following expression and draw a block diagram of the simplified expression and draw a block diagram of the simplified expression, using AND and OR gates.
$A \cdot(A+B+C) \cdot(\bar{A}+B+C) \cdot(A+\bar{B}+C) \cdot(A+B+\bar{C})$.
[15M]

UPSC - MATHEMATICS optional - 2017 Questions

1. Explain the main steps of the Gauss-Jordan method and apply this method to find the inverse of the matrix
$\left[\begin{array}{lll}2 & 6 & 6 \\ 2 & 8 & 6 \\ 2 & 6 & 8\end{array}\right]$
[10M]
2. Write the Boolean expression $z(y+z)(x+y+z)$ in its simplest form using Boolean postulate rules. Mention the rules used during simplification. Verify your result by constructing the truth table for the given expression and for its simplest form.
[10M]
3. For given equidistant values u_{-1}, u_{0}, u_{1} and u_{2}, a value is interpolated by Lagrange's formula. Show that it may be written in the form

$$
\begin{equation*}
u_{x}=y u_{0}+x u_{1}+\frac{y\left(y^{2}-1\right)}{3!} \Delta^{2} u_{-1}+\frac{x\left(x^{2}-1\right)}{3!} \Delta^{2} u_{0}, \text { where } x+y=1 . \tag{15M}
\end{equation*}
$$

4. Derive the formula
$\int_{a}^{b} y d x=\frac{3 h}{8}\left[\left(y_{0}+y_{n}\right)+3\left(y_{1}+y_{2}+y_{4}+y_{5}+\cdots+y_{n-1}\right)+2\left(y_{3}+y_{6}+\cdots+y_{n-3}\right)\right]$
Is there any restriction on n ? State that condition. What is the error bound in the case of Simpson's $\frac{3}{8}$ rule?
[20M]
5. Write an algorithm in the form of a flow chart for Newton-Raphson method. Describe the cases of failure of this method.
[15M]

UPSC - MATHEMATICS optional - 2018 Questions

1. Using Newton's forward difference formula find the lowest degree polynomial u_{x} when it is given that $u_{1}=1, u_{2}=9, u_{3}=25, u_{4}=55$ and $u_{5}=105$.
[10M]
2.

Time $($ minutes $)$	2	4	6	8	10	12	14	16	18	20
Speed $(K m / h)$	10	18	25	29	32	20	11	5	2	8.5

Starting from rest in the beginning, the speed (in Km / h) of a train at different times (in minutes) is given by the above table:

Using Simpson's $\frac{1}{3} r d$ rule, find the approximate distance travelled (in Km) in 20 minutes from the beginning.
[10M]
3. Find the equivalent of numbers given in a specified number system to the system mentioned against them
(i) $(111011.101)_{2}$ to decimal system
(ii) $(1000111110000.00101100)_{2}$ to hexadecimal system
(iii) (C4F2) ${ }_{16}$ to decimal system
(iv) (418) ${ }_{10}$ to binary system
[15M]
4. Find the values of the constants a, b, c such that the quadrature formula $\int_{0}^{h} f(x) d x=h\left[a f(0)+b f\left(\frac{h}{3}\right)+c f(h)\right]$ is exact for polynomials of as high degree as possible, and hence find the order of the truncation error.
5. Simplify the Boolean expression: $(a+b) \cdot(\bar{b}+c)+b \cdot(\bar{a}+\bar{c})$ by using the laws of Boolean algebra. From its truth table write it in minterm normal form.

UPSC - MATHEMATICS optional - 2019 Questions

1. Using differentials, find an approximate value of $f(4.1,4.9)$ where $f(x, y)=\left(x^{3}+x^{2} y\right)^{\frac{1}{2}}$.
[15M]
2. Apply Newton-Raphson method, to find a real root of transcendental equation $x \log _{10} x=1.2$, correct to three decimal places.
[10M]
3. Using Runge-Kutta method of fourth order, solve $\frac{d y}{d x}=\frac{y^{2}-x^{2}}{y^{2}+x^{2}}$ with $y(0)=1$ at $x=0.2$. Use four decimal places for calculation and step length 0.2 .
[10M]
4. Draw a flow chart and write a basic algorithm (in FORTRAN/C/C+) for evaluating $y=\int_{0}^{6} \frac{d x}{1+x^{2}}$ using Trapezoidal rule.
[10M]
5. Find the equivalent numbers given in a specified number to the system mentioned against them:
(i) Integer 524 in binary system.
(ii) 101010110101.101101011 to octal system.
(iii) decimal number 5280 to hexadecimal system.
(iv) Find the unknown number $(1101.101)_{8} \rightarrow(?) 10$.
[15M]
6. Given the Boolean expression $X=A B+A B C+A \bar{B} \bar{C}+A \bar{C}$
(i) Draw the logical diagram for the expression.
(ii) Minimize the expression
(iii) Draw the logical diagram for the reduced expression.

UPSC - MATHEMATICS optional - 2020 Questions

1. Show that the equation: $f(x)=\cos \frac{\pi(x+1)}{8}+0.148 x-0.9062=0$ has one root in the interval $(-1,0)$ and one in $(0,1)$. Calculate the negative root correct to four decimal places using Newton-Raphson method.
2. Let $g(w, x, y, z)=(w+x+y)(x+\bar{y}+z)(w+\bar{y})$ be a Boolean function. Obtain the conjunctive normal form for $g(w, x, y, z)$. Also express $g(w, x, y, z)$ as a product of maxterms.
[10M]

$$
4 x+y+2 z=4
$$

3. For the solution of the system of equations: $3 x+5 y+z=7$

$$
x+y+3 z=3
$$

Set up the Gauss-Seidel iterative scheme and iterate three times starting with the initial vector $X^{(0)}=0$. Also find the exact solutions and compare with the iterated solutions.
4. Find a quadrature formula $\int_{0}^{1} f(x) \frac{d x}{\sqrt{x(1-x)}}=\alpha_{1} f(0)+\alpha_{2} f\left(\frac{1}{2}\right)+\alpha_{3} f(1)$ which is exact for polynomials of highest possible degree. Then use the formula to evaluate $\int_{0}^{1} \frac{d x}{\sqrt{x-x^{3}}}$ (correct up to three decimal places).
[20M]
5. Write the three point Lagrangian interpolating polynomial relative to the points $x_{0}, x_{0}+\varepsilon$ and x_{1}. Then by taking the limit $\varepsilon \rightarrow 0$, establish the relation
[15M]

$$
f(x)=\frac{\left(x_{1}-x\right)\left(x+x_{1}-2 x_{0}\right)}{\left(x_{1}-x_{0}\right)^{2}} f\left(x_{0}\right)+\frac{\left(x-x_{0}\right)\left(x_{1}-x\right)}{\left(x_{1}-x_{0}\right)} f^{\prime}\left(x_{0}\right)+\frac{\left(x-x_{0}\right)^{2}}{\left(x_{1}-x_{0}\right)} f\left(x_{1}\right)+E(x)
$$

Where $E(x)=\frac{1}{6}\left(x-x_{0}\right)^{2}\left(x-x_{1}\right) f^{\prime \prime \prime}(\xi)$
is the error function and min. $\left(x_{0}, x_{0}+\varepsilon, x_{1}\right)<\xi \max .\left(x_{0}, x_{0}+\varepsilon, x_{1}\right)$
6. Given the Boolean expression $X=A B+A B C+A \bar{B} \bar{C}+A \bar{C}$
(i) Draw the logical diagram for the expression.
(ii) Minimize the expression
(iii) Draw the logical diagram for the reduced expression.

UPSC - MATHEMATICS optional - 2021 Questions

1. Find a positive root of the equation $3 x=1+\cos x$ by a numerical technique using initial values $0, \frac{\pi}{2}$; and further improve the result using Newton-Raphson method correct to 8 significant figures.
2. Convert $(3798 \cdot 3875)_{10}$ into octal and hexadecimal equivalents.
3. Obtain the principal conjunctive normal form of $(1 P \rightarrow R) \wedge(Q \leftrightarrows P)$.
4. Obtain the Boolean function $F(x, y, z)$ based on the table given below. Then simplify $F(x, y, z)$ and draw the corresponding GATE network:

x	y	z	$F(x, y, z)$
1	1	1	1
1	1	0	1
1	0	1	1
1	0	0	0
0	1	1	1
0	1	0	0
0	0	1	0
0	0	0	0

5. Solve the system of equations

$$
\begin{gathered}
3 x_{1}+9 x_{2}-2 x_{3}=11 \\
4 x_{1}+2 x_{2}+13 x_{3}=24 \\
4 x_{1}-2 x_{2}+x_{3}=-8
\end{gathered}
$$

Correct up to 4 significant figures by using Gauss-Seidel method after verifying whether the method is applicable in your transformed form of the system.
[15M]
6. Derive Newton's backward difference interpolation formula and also do error analysis.
[15M]

