INDIANCIULLS.COM

Online IAS Academy

Mathematics-Optional

 By Venkanna Sir and Satya Sir
Partial Differential Equations 2013-2021

INDIANCIVILS.COM +91-9000018804

UPSC - MATHEMATICS optional - 2013 Questions

1. Form a partial differential equation by eliminating the arbitrary functions f and g from $z=y f(x)+x g(y)$.
[10M]
2. Reduce the equation

$$
y \frac{\partial^{2} z}{\partial x^{2}}+(x+y) \frac{\partial^{2} z}{\partial x \partial y}+x \frac{\partial^{2} z}{\partial y^{2}}=0
$$

To its canonical form when $x \neq y$.
[10M]
3. Solve $\left(D^{2}+D D^{\prime}-6 D^{\prime 2}\right) z=x^{2} \sin (x+y)$

Where D and D^{\prime} denote $\frac{\partial}{\partial x}$ and $\frac{\partial}{\partial y}$.
[15M]
4. Find the surface which intersects the surfaces of the system

$$
z(x+y)=\mathrm{C}(3 z+1),(\mathrm{C} \text { being a constant })
$$

orthogonally and which passes through the circle $x^{2}+y^{2}=1, z=1$.
[15M]
5. A tightly stretched string with fixed end points $x=0$ and $x=l$ is initially at rest in equilibrium position. If it is set vibrating by giving each point a velocity $\lambda . x(l-x)$, find the displacement of the string at any distance x from one end at any time t.
[20M]

UPSC - MATHEMATICS optional - 2014 Questions

1.Solve the partial differential equation $\left(2 D^{2}-5 D D^{\prime}+2 D^{\prime 2}\right) z=24(y-x)$.
[10M]
2. Reduce the equation $\frac{\partial^{2} z}{\partial x^{2}}=x^{2} \frac{\partial^{2} z}{\partial y^{2}}$ to canonical form.
[15M]
3. Find the deflection of a vibrating string (length $=\pi$, ends fixed, $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}$) corresponding to zero initial velocity and initial deflection

$$
\begin{equation*}
f(x)=k(\sin x-\sin 2 x) \tag{15M}
\end{equation*}
$$

4. Solve $\frac{\partial^{2} u}{\partial t^{2}}=\frac{\partial^{2} u}{\partial x^{2}}, 0<x<1, t>0$, given that
(i) $u(x, 0)=0,0 \leq x \leq 1$
(ii) $\frac{\partial u}{\partial t}(x, 0)=x^{2}, 0 \leq x \leq 1$
(iii) $u(0, t)=u(1, t)=0$, for all t
[15M]

UPSC - MATHEMATICS optional - 2015 Questions

1. Solve the partial differential equation

$$
\begin{equation*}
\left(y^{2}+z^{2}-x^{2}\right) p-2 x y q+2 x z=0 \tag{10M}
\end{equation*}
$$

where $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$.
2. Solve $\left(D^{2}+D D^{\prime}-2 D^{\prime 2}\right) u=e^{x+y}$, where $D=\frac{\partial}{\partial x}$ and $D^{\prime}=\frac{\partial}{\partial y}$.
3. Solve for the general solution $p \cos (x+y)+q \sin (x+y)=z$, where $p=\frac{\partial z}{\partial x}$ and $q=\frac{\partial z}{\partial y}$.
4. Find the solution of the initial-boundary value problem.

$$
\begin{align*}
& u_{t}-u_{x x}+u=0, \quad 0<x<l, t>0 \\
& u(0, t)=u(l, t)=0, \quad t \geq 0 \\
& u(x, 0)=x(l-x), \quad 0<x<l \tag{15M}
\end{align*}
$$

5. Reduce the second-order partial differential equation

$$
x^{2} \frac{\partial^{2} u}{\partial x^{2}}-2 x y \frac{\partial^{2} u}{\partial x \partial y}+y^{2} \frac{\partial^{2} u}{\partial y^{2}}+x \frac{\partial u}{\partial x}+y \frac{\partial u}{\partial y}=0
$$

Into canonical form. Hence, find its general solution.

UPSC - MATHEMATICS optional - 2016 Questions

1. Find the general equation of surfaces orthogonal to the family of spheres given by $x^{2}+y^{2}+z^{2}=c z$.
[10M]
2. Find the general integral of the partial differential equation

$$
\begin{equation*}
(y+z x) p-(x+y z) q=x^{2}-y^{2} . \tag{10M}
\end{equation*}
$$

3. Determine the characteristics of the equation $z=p^{2}-q^{2}$, and find the integral surface which passes through the parabola $4 z+x^{2}=0, y=0$.
4. Solve the partial differential equation

$$
\begin{equation*}
\frac{\partial^{3} z}{\partial x^{3}}-2 \frac{\partial^{3} z}{\partial x^{2} \partial y}-\frac{\partial^{3} z}{\partial x \partial y^{2}}+2 \frac{\partial^{3} z}{\partial y^{3}}=e^{x+y} \tag{15M}
\end{equation*}
$$

5. Find the temperature $u(x, t)$ in a bar of silver of length 10 cm and constant cross-section of area $1 \mathrm{~cm}^{2}$. Let density $\rho=10.6 \mathrm{~g} / \mathrm{cm}^{2}$, thermal conductivity $K=1.04 \mathrm{cal} /\left(\mathrm{cm} \mathrm{sec}^{\circ} \mathrm{C}\right)$ and specific heat $\sigma=0.056 \mathrm{cal} / \mathrm{g}^{\circ} \mathrm{C}$. The bar is perfectly isolated laterally, with ends kept at $0^{\circ} \mathrm{C}$ and initial temperature $f(x)=\sin (0.1 \pi x)^{\circ} \mathrm{C}$. Note that $u(x, t)$ follows the heat equation $u_{t}=c^{2} u_{x x}$, where $c^{2}=K /(\rho \sigma)$.

UPSC - MATHEMATICS optional - 2017 Questions

1. Let $f=u+i v$ be an analytic function on the unit disc $D=\{z \in C:|z|<1\}$. Show that

$$
\frac{\partial^{2} u}{\partial x^{2}}+\frac{\partial^{2} u}{\partial y^{2}}=0=\frac{\partial^{2} v}{\partial x^{2}}+\frac{\partial^{2} v}{\partial y^{2}}
$$

at all points of D .
2. Solve $\left(D^{2}-2 D D^{\prime}+D^{\prime 2}\right) z=e^{x+2 y}+x^{3}+\sin 2 x$,

Where $D \equiv \frac{\partial}{\partial x}, \quad D^{\prime}=\frac{\partial}{\partial y}, \quad D^{2}=\frac{\partial^{2}}{\partial x^{2}}, D^{\prime 2}=\frac{\partial^{2}}{\partial y^{2}}$.
3. Let Γ be a closed curve in $x y$-plane and let S denote the region bounded by the curve Γ.

Let $\frac{\partial^{2} w}{\partial x^{2}}+\frac{\partial^{2} w}{\partial y^{2}}=f(x, y) \forall(x, y) \in S$. If f is prescribed at each point (x, y) of S and w is prescribed on the boundary Γ of S , then prove that any solution $w=w(x, y)$, satisfying these conditions, is unique.
[10M]
4. Find a complete integral of the partial differential equation

$$
\begin{equation*}
2(p q+y p+q x)+x^{2}+y^{2}=0 \tag{15M}
\end{equation*}
$$

5. Reduce the equation $y^{2} \frac{\partial^{2} z}{\partial x^{2}}-2 x y \frac{\partial^{2} z}{\partial x \partial y}+x^{2} \frac{\partial^{2} z}{\partial y^{2}}=\frac{y^{2}}{x} \frac{\partial z}{\partial x}+\frac{x^{2}}{y} \frac{\partial z}{\partial y}$ to canonical form and hence solve it.
6. Given the one-dimensional wave equation $\frac{\partial^{2} y}{\partial t^{2}}=c^{2} \frac{\partial^{2} y}{\partial x^{2}} ; t>0$, where $c^{2}=\frac{T}{m}, T$ is the constant tension in the string and m is the mass per unit length of the string.
(i) Find the appropriate solution of the above wave equation.
(ii) Find also the solution under the conditions $y(0, t)=0, y(l, t)=0$ for all t and

$$
\begin{equation*}
\left[\frac{\partial y}{\partial t}\right]_{t=0}=0, y(x, 0)=a \sin \frac{\pi x}{l}, 0<x<l . a>0 . \tag{20M}
\end{equation*}
$$

UPSC - MATHEMATICS optional - 2018 Questions

1. Find the partial differential equation of the family of all tangent planes to the ellipsoid: $x^{2}+4 y^{2}+4 z^{2}=4$, which are not perpendicular to the $x y$ plane
2. Solve the partial differential equation:

$$
\left(2 D^{2}-5 D D^{\prime}+2 D^{\prime 2}\right) z=5 \sin (2 x+y)+24(y-x)+e^{3 x+4 y}
$$

Where $D \equiv \frac{\partial}{\partial x} \quad, \quad D^{\prime}=\frac{\partial}{\partial y}$.
3. A thin annulus occupies the region $0<a \leq r \leq b, o \leq \theta \leq 2 \pi$. The faces are insulated. Along the inner edge the temperature is maintained at 0°, while along the outer edge the temperature is held at $T=K \cos \frac{\theta}{2}$, where K is a constant. Determine the temperature distribution in the annulus.
[20M]
4. Find the general solution of the partial differential equation:
$\left(y^{3} x-2 x^{4}\right) p+\left(2 y^{4}-x^{3} y\right) q=9 z\left(x^{3}-y^{3}\right)$, where $p=\frac{\partial z}{\partial x}, q=\frac{\partial z}{\partial y}$, and find its integral surface that passes through the curve: $x=t, y=t^{2}, z=1$.
[15M]

UPSC - MATHEMATICS optional - 2019 Questions

1. Form a partial differential equation of the family of surfaces given by the following expression: $\psi\left(x^{2}+y^{2}+2 z^{2}, y^{2}-2 z x\right)=0$.
2. Solve the first order quasilinear partial differential equation by the method of characteristics:

$$
x \frac{\partial u}{\partial x}+(u-x-y) \frac{\partial u}{\partial y}=x+2 y \text { in } x>0,-\infty<y<\infty \text { with } u=1+y \text { on } x=1 .
$$

3. Reduce the following second order partial differential equation to canonical form and find the general solution:

$$
\begin{equation*}
\frac{\partial^{2} u}{\partial x^{2}}-2 x \frac{\partial^{2} u}{\partial x \partial y}+x^{2} \frac{\partial^{2} u}{\partial y^{2}}=\frac{\partial y}{\partial x}+12 x . \tag{20M}
\end{equation*}
$$

UPSC - MATHEMATICS optional - 2020 Questions

1. Form a partial differential equation by eliminating the arbitrary functions $f(x)$ and $g(y)$ from $z=y f(x)+x g(y)$ and specify its nature (elliptic, hyperbolic or parabolic in the region $x>0, y>0$.
2. Solve the partial differential equation:

$$
\begin{align*}
& \left(D^{3}-2 D^{2} D^{\prime}-D D^{\prime 2}+2 D^{\prime 3}\right) z=e^{2 x+y}+\sin (x-2 y) \\
& D \equiv \frac{\partial}{\partial x}, \quad D^{\prime} \equiv \frac{\partial}{\partial y} \tag{10M}
\end{align*}
$$

3. Find the integral surface of the partial differential equation:
$(x-y) y^{2} \frac{\partial z}{\partial x}+(y-x) x^{2} \frac{\partial z}{\partial y}=\left(x^{2}+y^{2}\right) z$ that contains the curve: $x z=a^{3}, y=0$, on it.
[15M]
4. Find the solution of the partial differential equation: $z=\frac{1}{2}\left(p^{2}+q^{2}\right)+(p-x)(q-y)$; $p \equiv \frac{\partial z}{\partial x}, q \equiv \frac{\partial z}{\partial y}$ which passes through the x-axis.

UPSC - MATHEMATICS optional - 2021 Questions

1. Obtain the partial differential equation by eliminating arbitrary function f from the equation $f\left(x+y+z, x^{2}+y^{2}+z^{2}\right)=0$
2. Solve the wave equation $a^{2} \frac{\partial^{2} u}{\partial x^{2}}=\frac{\partial^{2} u}{\partial t^{2}}, 0<x<L, t>0$

Subject to the conditions

$$
\begin{equation*}
u(0, t)=0, \quad u(L, t)=0 \quad u(x, 0)=\frac{1}{4} x(L-x),\left.\frac{\partial u}{\partial t}\right|_{t=0}=0 \tag{10M}
\end{equation*}
$$

3. Find the general solution of the partial differential equation

$$
\begin{equation*}
\left(D^{2}-D^{\prime 2}-3 D+3 D^{\prime}\right) z=x y+e^{x+2 y} \text { Where } D \equiv \frac{\partial}{\partial x} \quad \text { and } \quad D^{\prime} \equiv \frac{\partial}{\partial y} \tag{15M}
\end{equation*}
$$

4. Find a complete integral of the partial differential equation $p=(z+q y)^{2}$ by using Charpit's method.
