INDIANCIULLS.COM

Online IAS Academy

Mathematics-Optional

 By Venkanna Sir and Satya SirComplex Analysis 2013-2021

INDIANCIVILS.COM +91-9000018804

UPSC - MATHEMATICS optional - 2013 Questions

1. Prove that if $b e^{a+1}<1$ where a and b are positive and real, then the function $z^{n} e^{-a}-b e^{z}$ has n zeroes in the unit circle.
[10M]
2. Using Cauchy's residue theorem, evaluate the integral

$$
\begin{equation*}
I=\int_{0}^{\pi} \sin ^{4} \theta d \theta \tag{15M}
\end{equation*}
$$

UPSC - MATHEMATICS optional - 2014 Questions

1. Prove that the function $f(z)=u+i v$, where
$f(z)=\frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, z \neq 0 ; f(0)=0$
Satisfies Cauchy-Riemann equations at the origin, but the derivative of f at $z=0$ does not exist.
[15M]
2. Expand in Laurent series the function $f(z)=\frac{1}{z^{2}(z-1)}$ about $z=0$ and $z=1$.
[10M]
3. Evaluate the integral $\int_{0}^{\pi} \frac{d \theta}{\left(1+\frac{1}{2} \cos \theta\right)^{2}}$ using residues.

UPSC - MATHEMATICS optional - 2015 Questions

1. Show that the function $v(x, y)=\ln \left(x^{2}+y^{2}\right)+x+y$ is harmonic. Find its conjugate harmonic function $u(x, y)$. Also, find the corresponding analytic function $f(z)=u+i v$ in terms of z .
[10M]
2. Find all possible Taylor's and Laurent's series expansions of the function $f(z)=\frac{2 z-3}{z^{2}-3 z+2}$ about the point $z=0$.
[20M]
3. State Cauchy's residue theorem. Using it, evaluate the integral $\int_{C} \frac{e^{z}+1}{z(z+1)(z-i)} d z ; C:|z|=2$

UPSC - MATHEMATICS optional - 2016 Questions

1. Is $v(x, y)=x^{3}-3 x y^{2}+2 y$ a harmonic function? Prove your claim. If yes, find its conjugate harmonic function $u(x, y)$ and hence obtain the analytic function whose real and imaginary parts are u and v respectively.
[10M]
2. Let $\gamma:[0,1] \rightarrow C$ be the curve

$$
\gamma(t)=e^{2 \pi i t}, 0 \leq t \leq 1 .
$$

Find, giving justifications, the value of the contour integral $\int_{\gamma} \frac{d z}{4 z^{2}-1}$
3. Prove that every power series represents an analytic function inside its circle of convergence.
[20M]

UPSC - MATHEMATICS optional - 2017 Questions

1. Determine all entire functions $f(z)$ such that 0 is a removable singularity of $f\left(\frac{1}{z}\right)$.
2. Using contour integral method, prove that $\int_{0}^{\infty} \frac{x \sin m x}{a^{2}+x^{2}} d x=\frac{\pi}{2} e^{-m a}$.

UPSC - MATHEMATICS optional - 2018 Questions

1. Prove that the function: $u(x, y)=(x-1)^{3}-3 x y^{2}+3 y^{2}$ is harmonic and find its harmonic conjugate and the corresponding analytic function $f(z)$ in terms of z.
[10M]
2. Show by applying the residue theorem that $\int_{0}^{\infty} \frac{d x}{\left(x^{2}+a^{2}\right)^{2}}=\frac{\pi}{4 a^{3}}, a>0$.
3. Find the Laurent's series which represent the function $\frac{1}{\left(1+z^{2}\right)(z+2)}$ when
(i) $|z|<1$
(ii) $1<|z|<2$
(iii) $|z|>2$
[15M]

UPSC - MATHEMATICS optional - 2019 Questions

1. Suppose $f(z)$ is analytic function on a domain D in \mathbb{C} and satisfies the equation $\operatorname{Im} f(z)=(\operatorname{Re} f(z))^{2}, Z \in D$. Show that $f(z)$ is constant in D.
[10M]
2. Show that an isolated singular point z_{0} of a function $f(z)$ is a pole of order m if and only if $f(z)$ can be written in the form $f(z)=\frac{\phi(z)}{\left(z-z_{0}\right)^{m}}$ where $\phi(z)$ is analytic and non-zero at z_{0}. Moreover $\underset{z=z_{0}}{\substack{\text { Res }}} f(z)=\frac{\phi^{(m-1)}\left(z_{0}\right)}{(m-1)!}$ if $m \geq 1$.
3. Evaluate the integral $\int_{c} \operatorname{Re}\left(z^{2}\right) d z$ from 0 to $2+4 i$ along the curve C where C is a parabola $y=x^{2}$.
[10M]
4. Obtain the first three terms of the Laurent series expansion of the function $f(z)=\frac{1}{\left(e^{z}-1\right)}$ about the point $z=0$ valid in the region $0<|z|<2 \pi$.
[10M]

UPSC - MATHEMATICS optional - 2020 Questions

1. Evaluate the integral $\int_{C}\left(z^{2}+3 z\right) d z$ counterclockwise from $(2,0)$ to $(0,2)$ along the curve C, where C is the circle $|z|=2$.
2. Using Contour integration, evaluate the integral $\int_{0}^{2 \pi} \frac{1}{3+2 \sin \theta} d \theta$.
3. If $v(r, \theta)=\left(r-\frac{1}{r}\right) \sin \theta, r \neq 0$, then find an analytic function $f(z)=u(r, \theta)+i v(r, \theta)$

UPSC - MATHEMATICS optional - 2021 Questions

1. Let $c:[0,1] \rightarrow \mathrm{C}, c(t)=e^{4 \pi i t}, 0 \leq t \leq 1$. Evaluate the contour integral $\int_{c} \frac{d z}{2 z^{2}-5 z+2}[\mathbf{1 0 M}]$
2. Find the Laurent series expansion of $f(z)=\frac{z^{2}-z+1}{z\left(z^{2}-3 z+2\right)}$ in the powers of $(z+1)$ in the region $|z|>3$.
[20M]
3. Let f be an entire function whose Taylor series expansion with centre $z=0$ has infinitely many terms. Show that $z=0$ is an essential singularity of $f\left(\frac{1}{z}\right)$.
[15M]
4. Using contour integration, evaluate the integral $\int_{-\infty}^{\infty} \frac{\sin x d x}{x\left(x^{2}+a^{2}\right)}, a>0$.
[20M]
