INDIANCIVILS.COM Online IAS Academy

Mathematics-Optional

By Venkanna Sir and Satya Sir

COMPLEX ANALYSIS 2013-2019

INDIANCIVILS.COM +91-9000018804

UPSC – MATHEMATICS optional – 2013 Questions

1. Prove that if $b e^{a+1} < 1$ where a and b are positive and real, then the function $z^n e^{-a} - be^z$ has n zeroes in the unit circle. [10M]

2. Using Cauchy's residue theorem, evaluate the integral

$$I = \int_0^\pi \sin^4 \theta d\theta \tag{15M}$$

UPSC – MATHEMATICS optional – 2014 Questions

1. Prove that the function f(z) = u + iv, where

$$f(z) = \frac{x^{3}(1+i)-y^{3}(1-i)}{x^{2}+y^{2}}, z \neq 0; f(0) = 0$$

Satisfies Cauchy-Riemann equations at the origin, but the derivative of f at z = 0 does not

exist.

- 2. Expand in Laurent series the function $f(z) = \frac{1}{z^2(z-1)}$ about z = 0 and z = 1. [10M]
- **3.** Evaluate the integral $\int_0^{\pi} \frac{d\theta}{\left(1 + \frac{1}{2}\cos\theta\right)^2}$ using residues. [20M]

UPSC – MATHEMATICS optional – 2015 Questions

1.Show that the function $v(x,y) = \ln(x^2 + y^2) + x + y$ is harmonic. Find its conjugate harmonic function u(x,y). Also, find the corresponding analytic function f(z) = u + iv in terms of z. [10M]

2.Find all possible Taylor's and Laurent's series expansions of the function $f(z) = \frac{2z-3}{z^2-3z+2}$ about the point z = 0. [20M]

3.State Cauchy's residue theorem. Using it, evaluate the integral $\int_C \frac{e^z + 1}{z(z+1)(z-i)} dz$; C: |z| = 2

[15M]

[15M]

UPSC – MATHEMATICS optional – 2016 Questions

1. Is $v(x, y) = x^3 - 3xy^2 + 2y$ a harmonic function ? Prove your claim. If yes, find its conjugate harmonic function u(x, y) and hence obtain the analytic function whose real and imaginary parts are *u* and *v* respectively. [10M]

2. Let $\gamma: [0, 1] \rightarrow C$ be the curve

$$\gamma(t) = e^{2\pi i t}, 0 \le t \le 1.$$

Find, giving justifications, the value of the contour integral $\int_{\gamma} \frac{dz}{4z^2 - 1}$ [15M]

3. Prove that every power series represents an analytic function inside its circle of convergence. [20M]

UPSC – MATHEMATICS optional – 2017 Questions

- **1.** Determine all entire functions f(z) such that 0 is a removable singularity of $f\left(\frac{1}{z}\right)$. [10M]
- **2.** Using contour integral method, prove that $\int_0^\infty \frac{x \sin mx}{a^2 + x^2} dx = \frac{\pi}{2} e^{-ma}.$ [15M]

UPSC – MATHEMATICS optional – 2018 Questions

- 1. Prove that the function: $u(x, y) = (x 1)^3 3xy^2 + 3y^2$ is harmonic and find its harmonic conjugate and the corresponding analytic function f(z) in terms of z. [10M]
- 2. Show by applying the residue theorem that $\int_0^\infty \frac{dx}{(x^2+a^2)^2} = \frac{\pi}{4a^3}$, a > 0. [15M]

3. Find the Laurent's series which represent the function $\frac{1}{(1+z^2)(z+2)}$ when

- (i) |z| < 1
- (ii) 1 < |z| < 2
- (iii) |z| > 2

[15M]

UPSC – MATHEMATICS optional – 2019 Questions

- 1. Suppose f(z) is analytic function on a domain D in \mathbb{C} and satisfies the equation $Im f(z) = (Re f(z))^2, Z \in D$. Show that f(z) is constant in D. [10M]
- Show that an isolated singular point z₀ of a function f(z) is a pole of order m if and only if f(z) can be written in the form f(z) = φ(z)/((z-z₀)m) where φ(z) is analytic and non zero at z₀. Moreover ^{Res}_{z=z₀} f(z) = φ(m-1)(z₀)/((m-1)!) if m ≥ 1. [15M]
- 3. Evaluate the integral $\int_{C} Re(z^2) dz$ from 0 to 2 + 4*i* along the curve *C* where *C* is a parabola $y = x^2$. [10M]
- 4. Obtain the first three terms of the Laurent series expansion of the function $f(z) = \frac{1}{(e^z 1)}$ about the point z = 0 valid in the region $0 < |z| < 2\pi$. [10M]

INDIANCIVILS.COM

An online IAS Academy

ONLINE LIVE COURSES WE OFFER:

1.MATHEMATICS - OPTIONAL 2.TELUGU LITERATURE - OPTIONAL 3.ELECTRICAL ENGINEERING - OPTIONAL

TEST SERIES WE OFFER:

MATHEMATICS - OPTIONAL

TELUGU LITERATURE - OPTIONAL

ELECTRICAL ENGINEERING - OPTIONAL

Subscribe to our voutube channel: INDIANCIVLS.COM E-mail : info@indiancivils.com Phone : +91-9000018804 / 9000018827 Facebook : https://www.facebook.com/indiancivilsdotcom