INDIANCIULLS.COM

Online IAS Academy

Mathematics-Optional By Venkanna Sir and Satya Sir

Abstract Algebra 2013-2021

INDIANCIVILS.COM +91-9000018804

UPSC - MATHEMATICS optional - 2013 Questions

1. Show that the set of matrices $S=\left\{\left.\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right) \right\rvert\, a, b \in R\right\}$ is a field under the usual binary operations of matrix addition and matrix multiplication. What are the additive and multiplicative identities and what is the inverse of $\left(\begin{array}{cc}1 & -1 \\ 1 & 1\end{array}\right)$? Consider the map $f: C \rightarrow S$ defined by $f(a+i b)=\left(\begin{array}{cc}a & -b \\ b & a\end{array}\right)$. Show that f is an isomorphism. (Here R is the set of real numbers and C is the set of complex numbers.
[10M]
2. Give an example of an infinite group in which every element has finite order.
[10M]
3. What are the orders of the following permutations in S_{10} ?

$$
\left(\begin{array}{llllllllll}
1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\
1 & 8 & 7 & 3 & 10 & 5 & 4 & 2 & 6 & 9
\end{array}\right) \text { and }(123345)(67) .
$$

4. What is the maximal possible order of an element in S_{10} ? Why? Give an example of such an element. How many elements will there be in S_{10} of that order?
5.Let $\mathrm{J}=\{a+b i \mid a, b \in Z\}$ be the ring of Gaussian integers (subring of C). Which of the following is J : Euclidean domain, principal ideal domain, unique factorization domain? Justify your answer.
5. Let $R^{C}=$ ring of all real valued continuous functions on $[0,1]$, under the operations.

$$
\begin{aligned}
& (f+g) x=f(x)+g(x) \\
& \qquad(f g) x=f(x) g(x) . \\
& \text { Let } M=\left\{f \in R^{C} \left\lvert\, f\left(\frac{1}{2}\right)=0\right.\right\} .
\end{aligned}
$$

Is M a maximal ideal of R? Justify your answer.
[15M]

UPSC - MATHEMATICS optional - 2014 Questions

1. Let G be the set of all real 2×2 matrices $\left[\begin{array}{ll}x & y \\ 0 & z\end{array}\right]$, where $x z \neq 0$. Show that G is a group under matrix multiplication. Let N denote the subset $\left\{\left[\begin{array}{ll}1 & a \\ 0 & 1\end{array}\right]: a \in R\right\}$. Is N a normal subgroup of G? Justify your answer.
2. Show that Z_{7} is a field. Then find $(|5|+|6|)^{-1}$ and $(-|4|)^{-1}$ in Z_{7}.
3. Show that the set $\left\{a+b \omega: \omega^{3}=1\right\}$, where a and b are real numbers, is a field with respect to usual addition and multiplication.
4. Prove that the set $\mathrm{Q}(\sqrt{5})=\{a+b \sqrt{5}: a, b \in Q\}$ is a commutative ring with identity.

UPSC - MATHEMATICS optional - 2015 Questions

1. (i) How many generators are there of the cyclic group G of order 8 ? Explain.
(ii) Taking a group $\{\mathrm{e}, \mathrm{a}, \mathrm{b}, \mathrm{c}\}$ of order 4 , where e is the identity, construct composition tables showing that one is cyclic while the other is not.
[10M]
2. Give an example of a ring having identity but a subring of this having a different identity.
3. If R is a ring with unit element 1 and \emptyset is homomorphism of R onto R ', prove that $\emptyset(1)$ is the unit element of R^{\prime}.
[15M]
4. Do the following sets form integral domains with respect to ordinary addition and multiplication? If so, state if they are fields :
(i) The set of numbers of the form $b \sqrt{2}$ with b rational
(ii) The set of even integers
(iii) The set of positive integers
[15M]

UPSC - MATHEMATICS optional - 2016 Questions

1. Let K be a field and $\mathrm{K}[\mathrm{X}]$ be the ring of polynomials over K in a single variable X . For a polynomial $f \in K[X]$, let (f) denote the ideal in $K[X]$ generated by f . Show that (f) is a maximal ideal in $\mathrm{K}[\mathrm{X}]$ if and only if f is an irreducible polynomial over K .
[10M]
2. Let p be a prime number and Z_{p} denote the additive group of integers modulo p . Show that every non-zero element of Z_{P} generates Z_{P}.
[15M]
3. Let K be an extension of a field F. Prove that the elements of K, which are algebraic over F , form a subfield of K . Further, if $F \subset K \subset L$ are fields, L is algebraic over K and K is algebraic over F , then prove that L , is algebraic over F .
[20M]
4. Show that every algebraically closed field is infinite.
[15M]

UPSC - MATHEMATICS optional - 2017 Questions

1. Let F be a field and $F[X]$ denote the ring of polynomials over F in a single variable X. For $\mathrm{f}(\mathrm{X}), \mathrm{g}(\mathrm{X}) \in F[X]$ with $\mathrm{g}(\mathrm{X}) \neq 0$, show that there exist $\mathrm{q}(\mathrm{X}), \mathrm{r}(\mathrm{X}) \in F[X]$ such that degree $(\mathrm{r}(\mathrm{X}))<$ degree $(\mathrm{g}(\mathrm{X}))$ and $f(X)=q(X) \cdot g(X)+r(X)$.
[20M]
2. Let G be a group of order n . Show that G is isomorphic to a subgroup of the permutation group S_{n}.
[10M]
3. Show that the groups $Z_{5} \times Z_{7}$ and Z_{35} are isomorphic.
4. Let R be an Integral domain with unit element. Show that any unit in $R[x]$ is a unit in R.
[10M]

UPSC - MATHEMATICS optional - 2018 Questions

1. Show that the quotient group of ($\mathrm{IR},+$) modulo Z is isomorphic to the multiplicative group of complex numbers on the unit circle in the complex plane. Here 1 R is the set of real numbers and Z is the set of integers.
[15M]
2. Find all the proper subgroups of the multiplicative group of the field $\left(Z_{13},+_{13}, \times_{13}\right)$, where $+_{13}$ and \times_{13} represent addition modulo 13 and multiplication modulo 13 respectively.
[15M]

UPSC - MATHEMATICS optional - 2019 Questions

1. Let G be a finite group, H and K subgroups of G such that $K \subset H$. Show that $(G: K)=(G: H)(H: K)$.
2. If G and H are finite groups whose orders are relatively prime, then prove that there is only one homomorphism from G to H, the trivial one.
3. Write down all quotient groups of the group Z_{12}.
4. Let a be an irreducible element of the Euclidean ring R, then prove that $R /(a)$ is a field.
[10M]

UPSC - MATHEMATICS optional - 2020 Questions

1. Let S_{3} and Z_{3} be permutation group on 3 symbols and group of residue classes module 3 respectively. Show that there is no homomorphism of S_{3} in Z_{3} except the trivial homomorphism.
2. Let R be a principal ideal domain. Show that every ideal of a quotient ring of R is principal ideal and R / P is a principal ideal domain for a prime ideal P and R.
3. Let G be a finite cyclic group of order n. Then prove that G has $\phi(n)$ generators (where ϕ is Euler' ϕ-function).
4. Let R be a finite field of characteristic $p(>0)$. Show that the mapping $f: R \rightarrow R$ defined by $f(a)=a^{p}, \forall a \in R$ is an isomorphism.

UPSC - MATHEMATICS optional - 2021 Questions

1. Let $m_{1}, m_{2}, \ldots, m_{k}$ be positive integers and $d>0$ the greatest common divisor of $m_{1}, m_{2}, \ldots, m_{k}$. Show that there exist integers $x_{1}, x_{2}, \ldots, x_{k}$ such that $d=x_{1} m_{1}+x_{2} m_{2}+\cdots+x_{k} m_{k}$
2. Let F be a field and $f(x) \in F(x)$ a polynomial of degree >0 over F. Show that there is a field F^{\prime} and an imbedding $q: F \rightarrow F^{\prime}$ show that the polynomial $f^{q} \in F^{\prime}[x]$ has a root in F^{\prime}, where f^{q} is obtained by replacing each coefficient a of f by $q(a)$.
3. Show that there are infinitely many subgroups of the additive group Q of rational numbers.
