INDIANCIVIS.COM Online IAS Academy

Mathematics-Optional

By Venkanna Sir and Satya Sir

Abstract Algebra 2013 - 2021

INDIANCIVILS.COM +91-9000018804

UPSC – MATHEMATICS optional – 2013 Questions

1. Show that the set of matrices $S = \{ \begin{pmatrix} a & -b \\ b & a \end{pmatrix} | a, b \in R \}$ is a field under the usual binary operations of matrix addition and matrix multiplication. What are the additive and multiplicative identities and what is the inverse of $\begin{pmatrix} 1 & -1 \\ 1 & 1 \end{pmatrix}$? Consider the map $f: C \to S$ defined by $f(a + ib) = \begin{pmatrix} a & -b \\ b & a \end{pmatrix}$. Show that f is an isomorphism. (Here R is the set of real numbers and C is the set of complex numbers. [10M]

- 2. Give an example of an infinite group in which every element has finite order. [10M]
- **3.** What are the orders of the following permutations in S_{10} ?
 - $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 & 9 & 10 \\ 1 & 8 & 7 & 3 & 10 & 5 & 4 & 2 & 6 & 9 \end{pmatrix} and (1 & 2 & 3 & 4 & 5)(6 & 7).$ [10M]
- 4. What is the maximal possible order of an element in S_{10} ? Why? Give an example of such an element. How many elements will there be in S_{10} of that order? [13M]
- **5.**Let $J = \{a + bi | a, b \in Z\}$ be the ring of Gaussian integers (subring of C). Which of the following is J : Euclidean domain, principal ideal domain, unique factorization domain ? Justify your answer. [15M]
- **6.** Let R^{C} = ring of all real valued continuous functions on [0, 1], under the operations.

$$(f+g)x = f(x) + g(x)$$
$$(fg)x = f(x)g(x).$$

Let
$$M = \left\{ f \in \mathbb{R}^C \, \middle| \, f\left(\frac{1}{2}\right) = 0 \right\}.$$

Is M a maximal ideal of R? Justify your answer.

[15M]

UPSC – MATHEMATICS optional – 2014 Questions

- **1.** Let G be the set of all real 2 × 2 matrices $\begin{bmatrix} x & y \\ 0 & z \end{bmatrix}$, where $xz \neq 0$. Show that G is a group under matrix multiplication. Let N denote the subset $\{\begin{bmatrix} 1 & a \\ 0 & 1 \end{bmatrix} : a \in R\}$. Is N a normal subgroup of G? Justify your answer. [10M]
- **2.** Show that Z_7 is a field. Then find $(|5| + |6|)^{-1}$ and $(-|4|)^{-1}$ in Z_7 . [15M]
- **3.** Show that the set $\{a + b\omega: \omega^3 = 1\}$, where a and b are real numbers, is a field with respect to usual addition and multiplication. [15M]

- maximal ideal in K[X] if and only if f is an irreducible polynomial over K. [10M]

UPSC – MATHEMATICS optional – 2016 Questions

- 2. Let p be a prime number and Z_p denote the additive group of integers modulo p. Show that every non-zero element of Z_P generates Z_P . [15M]
- 3. Let K be an extension of a field F. Prove that the elements of K, which are algebraic over F, form a subfield of K. Further , if $F \subset K \subset L$ are fields, L is algebraic over K and K is algebraic over F, then prove that L, is algebraic over F. [20M]
- 4. Show that every algebraically closed field is infinite. [15M]

1. Let K be a field and K[X] be the ring of polynomials over K in a single variable X. For a polynomial $f \in K[X]$, let (f) denote the ideal in K[X] generated by f. Show that (f) is a

- multiplication? If so, state if they are fields :
- (i) The set of numbers of the form $b\sqrt{2}$ with b rational

UPSC – MATHEMATICS optional – 2015 Questions

1. (i) How many generators are there of the cyclic group G of order 8? Explain.

4. Prove that the set $Q(\sqrt{5}) = \{a + b\sqrt{5}: a, b \in Q\}$ is a commutative ring with identity.

(ii) Taking a group {e, a, b, c} of order 4, where e is the identity, construct composition tables showing that one is cyclic while the other is not. [10M]

- 2. Give an example of a ring having identity but a subring of this having a different identity.
 - [10M]
- **3.** If R is a ring with unit element 1 and \emptyset is homomorphism of R onto R', prove that $\emptyset(1)$ is the unit element of R'. [15M]
- 4. Do the following sets form integral domains with respect to ordinary addition and

 - (ii) The set of even integers
 - (iii) The set of positive integers

[15M]

[15M]

UPSC – MATHEMATICS optional – 2017 Questions

- 1. Let F be a field and F[X] denote the ring of polynomials over F in a single variable X. For $f(X), g(X) \in F[X]$ with $g(X) \neq 0$, show that there exist $q(X), r(X) \in F[X]$ such that degree $(r(X)) < \text{degree } (g(X)) \text{ and } f(X) = q(X) \cdot g(X) + r(X).$ [20M]
- 2. Let G be a group of order n. Show that G is isomorphic to a subgroup of the permutation group S_n . [10M]

3. Show that the groups $Z_5 \times Z_7$ and Z_{35} are isomorphic.

4. Let R be an Integral domain with unit element. Show that any unit in R[x] is a unit in R.

[10M]

[15M]

UPSC – MATHEMATICS optional – 2018 Questions

- **1.** Show that the quotient group of (IR, +) modulo Z is isomorphic to the multiplicative group of complex numbers on the unit circle in the complex plane. Here IR is the set of real numbers and Z is the set of integers. [15M]
- 2. Find all the proper subgroups of the multiplicative group of the field $(Z_{13}, +_{13}, \times_{13})$, where $+_{13}$ and \times_{13} represent addition modulo 13 and multiplication modulo 13 respectively.

[15M]

UPSC – MATHEMATICS optional – 2019 Questions

1. Let <i>G</i> be a finite group, <i>H</i> and <i>K</i> subgroups of <i>G</i> such that $K \subset H$. Show that	
(G:K) = (G:H)(H:K).	[10M]
2. If G and H are finite groups whose orders are relatively prime, then prove that the	re is
only one homomorphism from G to H , the trivial one.	[10M]
3. Write down all quotient groups of the group Z_{12} .	[10M]

4. Let a be an irreducible element of the Euclidean ring R, then prove that R/(a) is a field.

[10M]

UPSC – MATHEMATICS optional – 2020 Questions

- 1. Let S_3 and Z_3 be permutation group on 3 symbols and group of residue classes module 3 respectively. Show that there is no homomorphism of S_3 in Z_3 except the trivial homomorphism. [10M]
- 2. Let *R* be a principal ideal domain. Show that every ideal of a quotient ring of *R* is principal ideal and R/P is a principal ideal domain for a prime ideal P and R. [10M]

- **3.** Let G be a finite cyclic group of order *n*. Then prove that G has $\phi(n)$ generators (where ϕ is Euler' ϕ -function). [15M]
- **4.** Let *R* be a finite field of characteristic p(>0). Show that the mapping $f: R \to R$ defined by $f(a) = a^p, \forall a \in R$ is an isomorphism. [15M]

UPSC – MATHEMATICS optional – 2021 Questions

- Let m₁, m₂, ..., m_k be positive integers and d > 0 the greatest common divisor of m₁, m₂, ..., m_k. Show that there exist integers x₁, x₂, ..., x_k such that d = x₁m₁ + x₂m₂ + ... + x_km_k
- 2. Let F be a field and $f(x) \in F(x)$ a polynomial of degree > 0 over F. Show that there is a field F' and an imbedding $q: F \to F'$ show that the polynomial $f^q \in F'[x]$ has a root in F', where f^q is obtained by replacing each coefficient a of f by q(a). [15M]
- 3. Show that there are infinitely many subgroups of the additive group *Q* of rational numbers. [15M]