INDIANCIVILS.COM Online IAS Academy

Mathematics-Optional

By Venkanna Sir and Satya Sir

LINEAR ALGEBRA 2013-2019

INDIANCIVILS.COM +91-9000018804

UPSC – MATHEMATICS optional – 2013 Questions

1. Find the inverse of the matrix:

$$A = \begin{bmatrix} 1 & 3 & 1 \\ 2 & -1 & 7 \\ 3 & 2 & -1 \end{bmatrix}$$

by using elementary row operations. Hence solve the system of linear equations

$$x + 3y + z = 10$$

$$2x - y + 7z = 21$$

$$3x + 2y - z = 4$$

2. Let A be a square matrix and A^* be its adjoint, show that the eigenvalues of matrices AA^* and A^*A are real. Further show that trace $(AA^*) = trace(A^*A)$. [10M]

3. Let P_n denote the vector space of all real polynomials of degree atmost n and T: P₂ → P₃ be a linear transformation given by T(p(x)) = ∫_o^x p(t)dt, p(x) ∈ P₂. Find the matrix of T with respect to the bases {1, x, x²} and {1, x, 1 + x², 1 + x³} of P₂ and P₃ respectively. Also, find the null space of T. [10M]

4. Let V be an n-dimensional vector space and $T: V \to V$ be an invertible linear operator. If $\beta = \{X_1, X_2, ..., X_n\}$ is a basis of V, show that $\beta' = \{TX_1, TX_2, ..., TX_n\}$ is also a basis of V. [08M]

5. Let
$$A = \begin{bmatrix} 1 & 1 & 1 \\ 1 & \omega^2 & \omega \\ 1 & \omega & \omega^2 \end{bmatrix}$$
 where $\omega \neq 1$ is a cube root of unity. If $\lambda_1, \lambda_2, \lambda_3$ denote the eigenvalues of A^2 , show that $|\lambda_1| + |\lambda_2| + |\lambda_3| \le 9$. [08M]

6. Find the rank of the matrix
$$A = \begin{bmatrix} 1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 8 & 12 \\ 3 & 5 & 8 & 12 & 17 \\ 5 & 8 & 12 & 17 & 23 \\ 8 & 12 & 17 & 23 & 30 \end{bmatrix}$$
 [08M]

- 7. Let A be a Hermetian matrix having all distinct eigenvalues $\lambda_1, \lambda_2, ..., \lambda_n$. If $X_1, X_2, ..., X_n$ are corresponding eigenvectors then show that the $n \times n$ matrix C whose k^{th} column consists of the vector X_k is non-singular. [08M]
- 8. Show that the vectors $X_1 = (1, 1 + i), X_2 = (i, -i, 1 i)$ and $X_3 = (0, 1 2i, 2 i)$ in C^3 are linearly independent over the field of real numbers but are linearly dependent over the field of complex numbers. [08M]

[10M]

UPSC – MATHEMATICS optional – 2014 Questions

- 1. Find one vector in R^3 which generates the intersection of V and W, where V is the xy plane and W is the space generated by the vectors (1, 2, 3) and (1, -1, 1). [10M]
- 2. Using elementary row or column operations, find the rank of the matrix [10M]
 - $\begin{bmatrix} 0 & 1 & -3 & -1 \\ 0 & 0 & 1 & 1 \\ 3 & 1 & 0 & 2 \\ 1 & 1 & -2 & 0 \end{bmatrix}$
- **3.** Let V and W be the following subspaces of R^4 :

$$V = \{(a, b, c, d): b - 2c + d = 0\} \text{ and } W = \{(a, b, c, d): a = d, b = 2c\}$$

Find a basis and the dimension of (i) V, (ii) W, (iii) V \cap W.

- 4. Investigate the values of λ and μ so that the equations x + y + z = 6, x + 2y + 3z = 10, x + 2y + λz = μ have (1) no solution, (2) a unique solution, (3) an infinite number of solutions. [10M]
- 5. Verify Cayley Hamilton theorem for the matrix $A = \begin{bmatrix} 1 & 4 \\ 2 & 3 \end{bmatrix}$ and hence find its inverse. Also, find the matrix represented by $A^5 - 4A^4 - 7A^3 + 11A^2 - A - 10$ I. [10M]
- 6. Let $A = \begin{bmatrix} -2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0 \end{bmatrix}$. Find the eigen values of A and the corresponding eigen vectors. [08M]
- 7. Prove that the eigen values of a unitary matrix have absolute value 1. [07M]

UPSC – MATHEMATICS optional – 2015 Questions

- 1. The vectors $V_1 = (1, 1, 2, 4), V_2 = (2, -1, -5, 2), V_3 = (1, -1, -4, 0)$ and $V_6 = (2, 1, 1, 6)$ are linearly independent. Is it true? Justify your answer. [10M]
- 2. Reduce the following matrix to row echelon form and hence find its rank:

[1	2	3	4]	
2	1	4	5	[10M]
1	5	5	7	
L8	1	14	17J	

[15M]

3. If matrix
$$A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$$
 then find A^{30} . [12M]

4. Find the eigen values and eigen vectors of the matrix:

$$\begin{bmatrix} 1 & 1 & 3 \\ 1 & 5 & 1 \\ 3 & 1 & 1 \end{bmatrix}$$
 [12M]

5. Let $V = R^3$ and $T \in A(V)$, for all $a_1 \in A(V)$, be defined by

T $(a_1, a_2, a_3) = (2a_1 + 5a_2 + a_3, -3a_1 + a_2 - a_3, -a_1 + 2a_2 + 3a_3)$ What is the matrix T relative to the basis V₁ = (1, 0, 1) V₂ = (-1, 2, 1) V₃ = (3, -1, 1) ?

6. Find the dimension of the subspace of
$$\mathbb{R}^4$$
, spanned by the set
{(1,0,0), (0,1,0,0), (1,2,0,1), (0,0,0,1)} Hence find its basis. [12M]

UPSC – MATHEMATICS optional – 2016 Questions

1. Using elementary row operations, find the inverse of $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 1 \end{bmatrix}$ [06M]

2. If
$$A = \begin{bmatrix} 1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3 \end{bmatrix}$$
, then find $A^{14} + 3A - 2I$. [04M]

3. (i) Using elementary row operations, find the condition that the linear equations

$$x - 2y + z = a$$

$$2x + 7y - 3z = b$$
 have a solution. [07M]

$$3x + 5y - 2z = c$$

(ii) If
$$W_1 = \{(x, y, z) | x + y - z = 0\}$$

$$W_2 = \{(x, y, z) | 3x + y - 2z = 0\}$$

$$W_3 = \{(x, y, z) | x - 7y + 3z = 0\} \text{ then find } \dim(W_1 \cap W_2 \cap W_3) \text{ and} \\ \dim(W_1 + W_2.)$$
[03M]

4. (i) If $M_2(R)$ is space of real matrices of order 2×2 and $P_2(x)$ is the space of real polynomials of degree at most 2, then find the matrix representation of $T: M_2(R) \rightarrow P_2(x)$, such that $T[\begin{pmatrix} a & b \\ \end{pmatrix}] = a + c + (a - d)x + (b + c)x^2$, with respect

to the standard bases of
$$M_2(R)$$
 and $P_2(x)$. Further find the null space of T. [10M]

(ii) If $T: P_2(x) \to P_3(x)$ is such that $T(f(x) = f(x) + 5 \int_0^x f(t) dt$, then choosing $\{1, 1 + x, 1 - x^2\}$ and $\{1, x, x^2, x^3\}$ as bases of $P_2(x)$ and $P_3(x)$ respectively, find the matrix of T. [06M]

[12M]

5. If
$$A = \begin{bmatrix} 1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1 \end{bmatrix}$$
, then find the eigenvalues and eigenvectors of A. [08M]

6. Prove that eigenvalues of a Hermitian matrix are all real.

7. If $A = \begin{bmatrix} 1 & -1 & 2 \\ -2 & 1 & -1 \\ 1 & 2 & 3 \end{bmatrix}$ is the matrix representation of a linear transformation $T: P_2(x) \rightarrow P_2(x)$ with respect to the bases $\{1 - x, x(1 - x), x(1 + x)\}$ and $\{1, 1 + x, 1 + x^2\}$, then find T. [18M]

UPSC – MATHEMATICS optional – 2017 Questions

 Let A = ² 2 ¹ 3. Find a non-singular matrix P such that P⁻¹AP is a diagonal matrix.
 [10M]
 [10M]
 Show that similar matrices have the same characteristic polynomial.
 [10M]
 Suppose U and W are distinct four dimensional subspaces of a vector space V, where dim V = 6. Find the possible dimensions of subspace U ∩ W.
 [10M]
 Consider the matrix mapping A: R⁴ → R³, where A = [1 2 3 1] Sign = [1 3 5 -2] Sign = [1 3 - 3].
 Find a basis and dimension of the image of A and those of the kernel A.
 [15M]
 Suppose that distinct non-zero eigenvectors of a matrix are linearly independent.
 [10M]
 [10M]
 Suppose that distinct non-zero eigenvectors of a matrix are linearly independent.
 [10M]
 [10M]
 Suppose that distinct non-zero eigenvectors of a matrix are linearly independent.
 [10M]
 Suppose that distinct non-zero eigenvectors of a matrix are linearly independent.
 [10M]
 Suppose that distinct non-zero eigenvectors of a matrix are linearly independent.
 [10M]
 Suppose that distinct non-zero eigenvectors of a matrix are linearly independent.
 [10M]
 Suppose that distinct non-zero eigenvectors of a matrix are linearly independent.
 [10M]
 Suppose that distinct non-zero eigenvectors of a matrix are linearly independent.
 [10M]
 Suppose the supose the suppose the su

6. Consider the following system of equations in x, y, z: [15M]

$$x + 2y + 2z = 1$$

$$x + ay + 3z = 3$$

$$x + 11y + az = b.$$

(i) For which values of a does the system have a unique solution?

(ii) For which pair of values (a, b) does the system have more than one solution?

[08M]

UPSC – MATHEMATICS optional – 2018 Questions

1. Let A be a 3×2 matrix and B a 2×3 matrix. Show that $C = A \cdot B$ is a singular matrix.

[10M]

[12M]

[13M]

- 2. Express basis vectors $e_1 = (1, 0)$ and $e_2 = (0, 1)$ as linear combinations of $\alpha_1 = (2, -1)$ and $\alpha_2 = (1, 3)$. [10M]
- 3. Show that if A and B are similar $n \times n$ matrices, then they have same eigenvalues.
- 4. For the system of linear equations

$$x + 3y - 2z = -1$$

$$5y + 3z = -8$$

x - 2y - 5z = 7

Determine which of the following statements are true and which are false:

- (i) The system has no solution.
- (ii) The system has a unique solution.
- (iii) The system has infinitely many solutions.

UPSC – MATHEMATICS optional – 2019 Questions

- Let T: R² → R² be a linear map such that T(2, 1) = (5, 7) and T(1, 2) = (3, 3). If A is the matrix corresponding to T with respect to the standard bases e₁, e₂, then find Rank (A).
- 2. If $A = \begin{bmatrix} 1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3 \end{bmatrix}$ and $B = \begin{bmatrix} 2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1 \end{bmatrix}$ then show that $AB = 6I_3$. Use this result to solve the following system of equations:

2x + y + z = 5x - y = 02x + y - z = 1[10M]

3. Let A and B be two orthogonal matrices of same order and $\det A + \det B = 0$. Show that A + B is a singular matrix. [15M]

4. Let
$$A = \begin{bmatrix} 5 & 7 & 2 & 1 \\ 1 & 1 & -8 & 1 \\ 2 & 3 & 5 & 0 \\ 3 & 4 & -3 & 1 \end{bmatrix}$$

(i) Find the rank of matrix A.

(ii) Find the dimension of the subspace

$$V = \left\{ (x_1, x_2, x_3, x_4) \in R^4 \left| A \begin{bmatrix} x_1 \\ x_2 \\ x_3 \\ x_4 \end{bmatrix} \right\}$$

5. State the Cayley-Hamilton theorem. Use this theorem to find A^{100} , where $A = \begin{bmatrix} 1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0 \end{bmatrix}$

[15+5=20M]

INDIANCIVILS.COM

An online IAS Academy

ONLINE LIVE COURSES WE OFFER:

1.MATHEMATICS - OPTIONAL 2.TELUGU LITERATURE - OPTIONAL 3.ELECTRICAL ENGINEERING - OPTIONAL

TEST SERIES WE OFFER:

MATHEMATICS - OPTIONAL

TELUGU LITERATURE - OPTIONAL

ELECTRICAL ENGINEERING - OPTIONAL

Subscribe to our voutube channel: INDIANCIVLS.COM E-mail : info@indiancivils.com Phone : +91-9000018804 / 9000018827 Facebook : https://www.facebook.com/indiancivilsdotcom