INDIANCIULLS.COM

Online IAS Academy

Mathematics-Optional

 By Venkanna Sir and Satya SirLinear Alegebra 2013-2021

INDIANCIVILS.COM +91-9000018804

UPSC - MATHEMATICS optional - 2013 Questions

1. Find the inverse of the matrix:

$$
\left.A=\llbracket \begin{array}{rrr}
1 & 3 & 1 \\
2 & -1 & 7 \\
3 & 2 & -1
\end{array}\right\rceil
$$

by using elementary row operations. Hence solve the system of linear equations

$$
\begin{gathered}
x+3 y+z=10 \\
2 x-y+7 z=21 \\
3 x+2 y-z=4
\end{gathered}
$$

2. Let A be a square matrix and A^{*} be its adjoint, show that the eigenvalues of matrices $A A^{*}$ and $A^{*} A$ are real. Further show that trace $\left(A A^{*}\right)=\operatorname{trace}\left(A^{*} A\right)$.
3. Let P_{n} denote the vector space of all real polynomials of degree atmost n and $T: P_{2} \rightarrow P_{3}$ be a linear transformation given by $T(p(x))=\int_{o}^{x} p(t) d t, \quad p(x) \in P_{2}$.
Find the matrix of T with respect to the bases $\left\{1, x, x^{2}\right\}$ and $\left\{1, x, 1+x^{2}, 1+x^{3}\right\}$ of P_{2} and P_{3} respectively. Also, find the null space of T.
[10M]
4. Let V be an n -dimensional vector space and $T: V \rightarrow V$ be an invertible linear operator. If $\beta=\left\{X_{1}, X_{2}, \ldots, X_{n}\right\}$ is a basis of V, show that $\beta^{\prime}=\left\{T X_{1}, T X_{2}, \ldots, T X_{n}\right\}$ is also a basis of V.
[08M]
5. Let $A=\left[\begin{array}{ccc}1 & 1 & 1 \\ 1 & \omega^{2} & \omega \\ 1 & \omega & \omega^{2}\end{array}\right]$ where $\omega(\neq 1)$ is a cube root of unity. If $\lambda_{1}, \lambda_{2}, \lambda_{3}$ denote the eigenvalues of A^{2}, show that $\left|\lambda_{1}\right|+\left|\lambda_{2}\right|+\left|\lambda_{3}\right| \leq 9$.
6. Find the rank of the matrix $A=\left[\left.\begin{array}{rrrrr}1 & 2 & 3 & 4 & 5 \\ 2 & 3 & 5 & 8 & 12 \\ 3 & 5 & 8 & 12 & 17 \\ 5 & 8 & 12 & 17 & 23 \\ 8 & 12 & 17 & 23 & 30\end{array} \right\rvert\,\right.$
7. Let A be a Hermetian matrix having all distinct eigenvalues $\lambda_{1}, \lambda_{2}, \ldots, \lambda_{n}$. If $X_{1}, X_{2}, \ldots, X_{n}$ are corresponding eigenvectors then show that the $n \times n$ matrix C whose $k^{\text {th }}$ column consists of the vector X_{k} is non-singular.
8. Show that the vectors $X_{1}=(1,1+i), X_{2}=(i,-i, 1-i)$ and $X_{3}=(0,1-2 i, 2-i)$ in C^{3} are linearly independent over the field of real numbers but are linearly dependent over the field of complex numbers.
[08M]

UPSC - MATHEMATICS optional - 2014 Questions

1. Find one vector in R^{3} which generates the intersection of V and W , where V is the xy plane and W is the space generated by the vectors $(1,2,3)$ and $(1,-1,1)$.
2. Using elementary row or column operations, find the rank of the matrix

$$
\left[\begin{array}{rrrr}
0 & 1 & -3 & -1 \\
0 & 0 & 1 & 1 \\
3 & 1 & 0 & 2 \\
1 & 1 & -2 & 0
\end{array}\right]
$$

3. Let V and W be the following subspaces of R^{4} :

$$
\mathrm{V}=\{(a, b, c, d): b-2 c+d=0\} \text { and } \mathrm{W}=\{(a, b, c, d): a=d, b=2 c\}
$$

Find a basis and the dimension of (i) V, (ii)W, (iii) V $\cap \mathrm{W}$.
4. Investigate the values of λ and μ so that the equations $x+y+z=6$,
$x+2 y+3 z=10, x+2 y+\lambda z=\mu$ have (1) no solution, (2) a unique solution, (3) an infinite number of solutions.
5. Verify Cayley - Hamilton theorem for the matrix $A=\left[\begin{array}{ll}1 & 4 \\ 2 & 3\end{array}\right]$ and hence find its inverse. Also, find the matrix represented by $A^{5}-4 A^{4}-7 A^{3}+11 A^{2}-A-10 I$.
6. Let $A=\left[\begin{array}{rrr}-2 & 2 & -3 \\ 2 & 1 & -6 \\ -1 & -2 & 0\end{array}\right]$. Find the eigen values of A and the corresponding eigen vectors.
7. Prove that the eigen values of a unitary matrix have absolute value 1 .

UPSC - MATHEMATICS optional - 2015 Questions

1. The vectors $\mathrm{V}_{1}=(1,1,2,4), \mathrm{V}_{2}=(2,-1,-5,2), \mathrm{V}_{3}=(1,-1,-4,0)$ and $\mathrm{V}_{6}=(2,1,1,6)$ are linearly independent. Is it true? Justify your answer.
2. Reduce the following matrix to row echelon form and hence find its rank:

$$
\left[\begin{array}{rrrr}
1 & 2 & 3 & 4 \\
2 & 1 & 4 & 5 \\
1 & 5 & 5 & 7 \\
8 & 1 & 14 & 17
\end{array}\right]
$$

3. If matrix $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$ then find A^{30}.
4. Find the eigen values and eigen vectors of the matrix:

$$
\left[\begin{array}{lll}
1 & 1 & 3 \\
1 & 5 & 1 \\
3 & 1 & 1
\end{array}\right]
$$

[12M]
5. Let $\mathrm{V}=\mathrm{R}^{3}$ and $\mathrm{T} \in \mathrm{A}(\mathrm{V})$, for all $a_{1} \in \mathrm{~A}(\mathrm{~V})$, be defined by
[12M]
$\mathrm{T}\left(a_{1}, a_{2}, a_{3}\right)=\left(2 a_{1}+5 a_{2}+a_{3},-3 a_{1}+a_{2}-a_{3},-a_{1}+2 a_{2}+3 a_{3}\right)$ What is the matrix T relative to the basis $V_{1}=(1,0,1) V_{2}=(-1,2,1) V_{3}=(3,-1,1)$?
6. Find the dimension of the subspace of R^{4}, spanned by the set $\{(1,0,0),(0,1,0,0),(1,2,0,1),(0,0,0,1)\}$ Hence find its basis.

UPSC - MATHEMATICS optional - 2016 Questions

1. Using elementary row operations, find the inverse of $A=\left[\begin{array}{lll}1 & 2 & 1 \\ 1 & 3 & 2 \\ 1 & 0 & 1\end{array}\right]$
2. If $A=\left[\begin{array}{rrr}1 & 1 & 3 \\ 5 & 2 & 6 \\ -2 & -1 & -3\end{array}\right]$, then find $A^{14}+3 A-2 I$.
3. (i) Using elementary row operations, find the condition that the linear equations

$$
\begin{align*}
x-2 y+z & =a \\
2 x+7 y-3 z & =b \text { have a solution. } \tag{07M}\\
3 x+5 y-2 z & =c
\end{align*}
$$

(ii) If $W_{1}=\{(x, y, z) \mid x+y-z=0\}$

$$
W_{2}=\{(x, y, z) \mid 3 x+y-2 z=0\}
$$

$W_{3}=\{(x, y, z) \mid x-7 y+3 z=0\}$ then find $\operatorname{dim}\left(\mathrm{W}_{1} \cap \mathrm{~W}_{2} \cap \mathrm{~W}_{3}\right)$ and $\operatorname{dim}\left(W_{1}+W_{2}.\right)$
4. (i) If $M_{2}(R)$ is space of real matrices of order 2×2 and $P_{2}(x)$ is the space of real polynomials of degree at most 2 , then find the matrix representation of $T: M_{2}(R) \rightarrow P_{2}(x)$, such that $T\left[\left(\begin{array}{ll}a & b \\ c & d\end{array}\right)\right]=a+c+(a-d) x+(b+c) x^{2}$, with respect to the standard bases of $M_{2}(R)$ and $P_{2}(x)$. Further find the null space of T.
[10M]
(ii) If $T: P_{2}(x) \rightarrow P_{3}(x)$ is such that $T\left(f(x)=f(x)+5 \int_{0}^{x} f(t) d t\right.$, then choosing $\left\{1,1+x, 1-x^{2}\right\}$ and $\left\{1, x, x^{2}, x^{3}\right\}$ as bases of $P_{2}(x)$ and $P_{3}(x)$ respectively, find the matrix of T .
5. If $A=\left[\begin{array}{lll}1 & 1 & 0 \\ 1 & 1 & 0 \\ 0 & 0 & 1\end{array}\right]$, then find the eigenvalues and eigenvectors of A .
6. Prove that eigenvalues of a Hermitian matrix are all real.
[08M]
7. If $A=\left[\begin{array}{rrr}1 & -1 & 2 \\ -2 & 1 & -1 \\ 1 & 2 & 3\end{array}\right]$ is the matrix representation of a linear transformation $T: P_{2}(x) \rightarrow P_{2}(x)$ with respect to the bases $\{1-x, x(1-x), x(1+x)\}$ and $\left\{1,1+x, 1+x^{2}\right\}$, then find T .

UPSC - MATHEMATICS optional - 2017 Questions

1. Let $A=\left[\begin{array}{ll}2 & 2 \\ 1 & 3\end{array}\right]$. Find a non-singular matrix P such that $P^{-1} A P$ is a diagonal matrix.
2. Show that similar matrices have the same characteristic polynomial.
[10M]
3. Suppose U and W are distinct four dimensional subspaces of a vector space V, where $\operatorname{dim} V=6$. Find the possible dimensions of subspace $U \cap W$.
4. Consider the matrix mapping $A: R^{4} \rightarrow R^{3}$, where $A=\left[\begin{array}{rrrr}1 & 2 & 3 & 1 \\ 1 & 3 & 5 & -2 \\ 3 & 8 & 13 & -3\end{array}\right]$. Find a basis and dimension of the image of A and those of the kernel A .
5. Prove that distinct non-zero eigenvectors of a matrix are linearly independent.
6. Consider the following system of equations in x, y, z :

$$
\begin{gathered}
x+2 y+2 z=1 \\
x+a y+3 z=3 \\
x+11 y+a z=b
\end{gathered}
$$

(i) For which values of a does the system have a unique solution?
(ii) For which pair of values (a, b) does the system have more than one solution?

UPSC - MATHEMATICS optional - 2018 Questions

1. Let A be a 3×2 matrix and B a 2×3 matrix. Show that $C=A \cdot B$ is a singular matrix.
[10M]
2. Express basis vectors $e_{1}=(1,0)$ and $e_{2}=(0,1)$ as linear combinations of $\alpha_{1}=(2,-1)$ and $\alpha_{2}=(1,3)$.
[10M]
3. Show that if A and B are similar $n \times n$ matrices, then they have same eigenvalues.
4. For the system of linear equations

$$
\begin{aligned}
& x+3 y-2 z=-1 \\
& 5 y+3 z=-8 \\
& x-2 y-5 z=7
\end{aligned}
$$

Determine which of the following statements are true and which are false:
(i) The system has no solution.
(ii) The system has a unique solution.
(iii) The system has infinitely many solutions.

UPSC - MATHEMATICS optional - 2019 Questions

1. Let $T: R^{2} \rightarrow R^{2}$ be a linear map such that $T(2,1)=(5,7)$ and $T(1,2)=(3,3)$. If A is the matrix corresponding to T with respect to the standard bases e_{1}, e_{2}, then find Rank (A).
[10M]
2. If $A=\left[\begin{array}{rrr}1 & 2 & 1 \\ 1 & -4 & 1 \\ 3 & 0 & -3\end{array}\right]$ and $B=\left[\begin{array}{rrr}2 & 1 & 1 \\ 1 & -1 & 0 \\ 2 & 1 & -1\end{array}\right]$ then show that $A B=6 I_{3}$. Use this result to solve the following system of equations:

$$
\begin{array}{r}
2 x+y+z=5 \\
x-y=0 \tag{10M}\\
2 x+y-z=1
\end{array}
$$

3. Let A and B be two orthogonal matrices of same order and $\operatorname{det} A+\operatorname{det} B=0$. Show that $A+B$ is a singular matrix.
[15M]
4. Let $A=\left[\begin{array}{rrrr}5 & 7 & 2 & 1 \\ 1 & 1 & -8 & 1 \\ 2 & 3 & 5 & 0 \\ 3 & 4 & -3 & 1\end{array}\right]$
(i) Find the rank of matrix A.
(ii) Find the dimension of the subspace

$$
\left.V=\left\{\left(x_{1}, x_{2}, x_{3}, x_{4}\right) \in R^{4}|A| \begin{array}{l}
x_{1} \\
x_{2} \\
x_{3} \\
x_{4}
\end{array}\right]\right\}
$$

$[15+5=20 \mathrm{M}]$
5. State the Cayley-Hamilton theorem. Use this theorem to find A^{100}, where $A=\left[\begin{array}{lll}1 & 0 & 0 \\ 1 & 0 & 1 \\ 0 & 1 & 0\end{array}\right]$
[15M]

UPSC - MATHEMATICS optional - 2020 Questions

1. Consider the set V of all $n \times n$ real magic squares. Show that V is a vector space over R . give examples of two distinct 2×2 magic squares.
[10M]
2. Let $M_{2}(R)$ be the vector space of all 2×2 real matrices. Let $B=\left[\begin{array}{rr}1 & -1 \\ -4 & 4\end{array}\right]$ Suppose $T: M_{2}(R) \rightarrow M_{2}(R)$ is a linear transformation defined by $T(A)=B A$. Find the rank and nullity of T. Find a matrix A which maps to the null matrix.
3. Define an $n \times n$ matrix as $A=I-2 u \cdot u^{T}$, where u is a unit column vector.
(i) Examine if A is symmetric.
(ii) Examine if A is orthogonal.
(iii) Show that trace $(A)=n-2$.
(iv) Find $A_{3 \times 3}$, when $u=\left[\begin{array}{l}\frac{1}{3} \\ \frac{2}{3} \\ \frac{2}{2} \\ \frac{2}{3}\end{array}\right]$
4. Let F be a subfield of complex numbers and T a function from $F^{3} \rightarrow F^{3}$ defined by $T\left(x_{1}, x_{2}, x_{3}\right)=\left(x_{1}+x_{2}+3 x_{3},-3 x_{1}+x_{2}-x_{3}\right)$. What are the conditions on a, b, c such that (a, b, c) be in the null space of T ? Find the nullity of T.
5. Let $A=\left[\begin{array}{rrr}1 & 0 & 2 \\ 2 & -1 & 3 \\ 4 & 1 & 8\end{array}\right]$ and $B=\left[\begin{array}{rrr}-11 & 2 & 2 \\ -4 & 0 & 1 \\ 6 & -1 & -1\end{array}\right]$
(i) Find $A B$
(ii) Find $\operatorname{det}(A)$ and $\operatorname{det}(B)$.
(iii) Solve the following system of linear equations:

$$
x+2 z=3,2 x-y+3 z=3,4 x+y+8 z=14
$$

UPSC - MATHEMATICS optional - 2021 Questions

1. If $A=\left[\begin{array}{ccc}1 & -1 & 1 \\ 2 & -1 & 0 \\ 1 & 0 & 0\end{array}\right]$, then show that $A^{2}=A^{-1}$ (without finding A^{-1})
[10M]
2. Find the matrix associated with the linear operator on $V_{3}(R)$ defined by $T(a, b, c)=(a+b, a-b, 2 c)$ with respect to the ordered basis. $B=\{(0,1,1),(1,0,1)$, $(1,1,0)\}$
3. Show that $S=\{(x, 2 y, 3 x): x, y$ are real numbers $\}$ is a subspace of $R^{3}(R)$. Find two bases of S. Also find the dimension of S.
4. Prove that the eigen vectors, corresponding to two distinct eigen values of a real symmetric matrix, are orthogonal.
5. For two square matrices A and B of order 2, show that trace $(A B)=$ trace $(B A)$. Hence show that $A B-B A \neq I_{2}$ is an identity matrix of order 2 .
[07M]
6. Reduce the following matrix to a row-reduced echelon form and hence also, find its rank: $A=\left[\begin{array}{lllll}1 & 3 & 2 & 4 & 1 \\ 0 & 0 & 2 & 2 & 0 \\ 2 & 6 & 2 & 6 & 2 \\ 3 & 9 & 1 & 10 & 6\end{array}\right]$
[10M]
7. Find the eigen values and the corresponding eigen vectors of the matrix $A=\left(\begin{array}{cc}0 & -i \\ i & 0\end{array}\right)$, over the complex-number field.
[10M]
