Electrical

Engineering

- Optional

For IAS (UPSC)
Digital Electronics - 2015-2021

UPSC - ELECTRICAL Engineering optional - 2015 Questions

1. Obtain all the possible minimal functions for: $F=\sum(0,2,3,4,5,7)$.
[10M]
2. Divide by N counter is shown in the figure below. If Initially $Q_{0}=0, Q_{1}=1, Q_{2}=0$, what is the value of N ?

Figure

UPSC - ELECTRICAL Engineering optional - 2016 Questions

1. Minimize the SOP terms given for a Boolean function $f(A, B, C, D)=$ $\sum m(2,3,8,10,11,12,14,15)$

Implement the minimized function using NAND gates alone.
2. What is a PLA? Realize the following functions using an appropriate PLA:

$$
\begin{gathered}
f_{1}=A B+C D \\
f_{2}=\bar{A} B+A \bar{B} \\
f_{3}=A D+B C+\bar{B} D
\end{gathered}
$$

UPSC - ELECTRICAL Engineering optional - 2017 Questions

1. For the Boolean function $F(W, X, Y, Z)=\sum(0,2,5,6,7,8,10,13)$
(i) find all the prime implicants;
(ii) give minimal representation;
(iii) find minimal two-level realization using NAND gates only.
2. Prove that $\bar{A} B+\bar{B} C+\bar{A} C=\bar{A} B+\bar{B} C$.
3. Find the state transition diagram and realization using J-K flip-flops to count Mod 7 in the following sequence: $000,001,011,100,101,111$

UPSC - ELECTRICAL Engineering optional - 2018 Questions

1. Convert the following logic equation to NAND logic and draw the circuit using NAND gates: $Z=(\overline{A+B})+C+A(\overline{B+C})$
[20M]
2. Convert a D flip flop to function as an S-R flip flop .Draw the circuit.
3. Design a synchronous counter using D flip flop that counts in the following sequence:

$$
6,3,5,0,2,6,3,5,0,2,6, \ldots
$$

Draw the circuit.

UPSC - ELECTRICAL Engineering optional - 2019 Questions

1. Simplify the following expression using Boolean algebra:
[10M]

$$
\mathrm{Y}=\mathrm{AC}+\mathrm{A}(\mathrm{~B}+\mathrm{C})+\mathrm{C}(\mathrm{~B}+\mathrm{C})
$$

and draw the logic diagram for reduced expression.
2. Implement Astable Multi vibrator using NAND gates and explain its operation.
3. Reduce the combinational logic circuit shown in Figure 7(d) to a minimum form.

Figure 3.
4. Draw the block diagram of a single slope type A/D converter and explain its principle of operation.

UPSC - ELECTRICAL Engineering optional - 2020 Questions

1. Implement the following Boolean functions with a 4×3 Programmable Logic Array (PLA):

$$
\begin{aligned}
& F_{1}=\bar{B} \bar{C}+A \bar{B} \\
& F_{2}=A B \bar{C}+A \bar{B} C \bar{D} \\
& F_{3}=\bar{A} \bar{B} \bar{C} D+A \bar{B} C D
\end{aligned}
$$

2. Design a combinational circuit to implement the minimal sum-of-products of the logic function $F=\sum_{W X Y Z}(1,2,3,4,5,7,11,13)$.
3. Design a synchronous sequential circuit with D-flip-flops for a state diagram shown in Figure 4(b).

Figure (b)

UPSC - ELECTRICAL Engineering optional - 2021 Questions

1. Consider the four variables logic function defined as follows:
$F(A, B, C, D)=\bar{A} C+\bar{A} D+\bar{B} C+\bar{B} D+A B \bar{C} \bar{D}$
Assuming input variables as $\mathrm{A}, \mathrm{B}, \mathrm{C}$ and D , propose a logic circuit using only three logic gates to implement the function.
2. Consider the circuit shown in Figure 2(c) below. Let inputs A, B and C be all initially LOW. Output Y is supposed to go HIGH only when A, B and C go HIGH in a certain sequence. Determine the sequence that will make Y go HIGH. Modify this circuit to use D-Flip-flops.

Figure 2(c)
3. (i) Verify by determining the logic equation for the output and by constructing the truth table for the logic circuit shown in Figure 4(b).
(ii) Use an 8 to 1 multiplexer and logic gates to implement the following function: [20M] $F(A, B, C, D, E)=\sum m(0,1,2,4,5,6,7,13,14,20,21, . ., 28,29,30,31)$

Figure 4(b)

INDIANCIVILS.COM An online IAS Academy

ONLINE LIVE COURSES WE OFFER:

1.MATHEMATICS - OPTIONAL 2.TELUGU LITERATURE -OPTIONAL 3. PHYSICS OPTIONAL 4. ELECTRICAL OPTIONAL

Subscribe to our youtube channel: INDIANCIVLS.COM E-mail : info@indiancivils.com Phone : +91-9000018804 / 9000018827
Facebook : https://www.facebook.com/indiancivilsdotcom

