Electrical

Engineering

- Optional

For IAS (UPSC)

Signals \& Systems - 2015-2021

UPSC - ELECTRICAL Engineering optional - 2015 Questions

1. Find the z transform of:
$f(t)=\sin w t$ for $t \geq 0$.
2. Find the Laplace transform of the function:
$f(t)=2 e^{-t} \cos 10 t-t^{4}+6 e^{-(t-10)}$ for $t>0$.
3. The transfer function of a system is given as: $\frac{C(s)}{R(s)}=\frac{(s+3)}{s(s+1)(s+2)}$. Find out the impulse response of the system.

UPSC - ELECTRICAL Engineering optional - 2016 Questions

1. Determine the overall impulse response, $h(n)$, of the system shown in Fig. 1(b) below. Given that

$$
\begin{gathered}
h_{1}(n)=\delta(n)-\left(\frac{1}{5}\right) \delta(n-1) \\
h_{2}(n)=\delta(n)-\delta(n-1) \\
h_{3}(n)=\left(\frac{1}{5}\right)^{n} u(n) \\
h_{4}(n)=(n-1) u(n) \\
h_{4}(n)=(n-1) u(n)
\end{gathered}
$$

$$
h_{5}(n)=\delta(n)+n u(n-1)+\delta(n-2) \quad \text { where } \delta(n) \text { and } u(n) \text { denote },
$$

respectively, the unit impulse and unit step signals:

2. Consider a continuous-time LTI system for which the input $x(t)$ and output $y(t)$ are related by the following differential equation:
$\frac{d^{2} y(t)}{d t^{2}}-\frac{d y(t)}{d t}-2 y(t)=x(t)$
Determine the impulse response, $h(t)$, of the system for the following cases by plotting pole-zero pattern:
(i) The system is causal.
(ii) The system is stable.
(iii) The system is neither stable nor causal.
3. Determine the causal signal, $x(n)$, having its z-transform $X(z)=\frac{1}{\left(1+z^{-1}\right)\left(1-z^{-1}\right)^{2}} \quad[\mathbf{1 0 M}]$

UPSC - ELECTRICAL Engineering optional - 2017 Questions

1. A continuous time signal $x(t)$ is shown in Fig. 1(b). Sketch and label each of the following signals:
(i) $x(t) u(2-t)$
(ii) $x(t) \delta\left(t-\frac{7}{2}\right)$
[10M]

2. Discuss the properties of a probability density function. What additional features a normal distribution has?
[10M]
3. Find the Laplace transform of the function $f(t)=u(\sin 2 t)$.
4. Determine the transfer function and therefrom the impulse response of the causal linear time invariant system described by the difference equation

$$
\begin{equation*}
y(n)-\frac{1}{4} y(n-1)-\frac{3}{8} y(n-2)=-x[n]+2 x[n-1] \tag{20M}
\end{equation*}
$$

UPSC - ELECTRICL Engineering optional - 2018 Questions

1. Find the Laplace transform of the periodic functions $f(t)$ shown in Figure 1(b). [10M]

Figure 1(b)

UPSC - ELECTRICL Engineering optional - 2019 Questions

1. Determine and sketch the convolution of the two signals given below:

$$
\mathrm{x}(\mathrm{t})=\left\{\begin{array}{lr}
2, & -1 \leq t \leq 1 \\
1, & 1<t \leq 3 \\
0, & \text { elsewhere }
\end{array}\right.
$$

and $h(t)=2 \delta(t+1)+\delta(t+2)$
2. Find the Laplace transform of the following signals:

$$
\begin{aligned}
& \text { (i) } x_{1}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}} \cos \left(\omega_{0} \mathrm{t}\right) \mathrm{u}(\mathrm{t}) \\
& \text { (i) } \mathrm{x}_{2}(\mathrm{t})=\mathrm{e}^{-\mathrm{at}} \sin \left(\omega_{0} \mathrm{t}\right) \mathrm{u}(\mathrm{t})
\end{aligned}
$$

3. An LTI system is characterized by the following difference equation:

$$
y(n)-\frac{3}{4} y(n-1)+\frac{1}{8} y(n-2)=2 x(n)
$$

(i) Find the impulse response of the system, if the input to the system is

$$
x(n)=\left(\frac{1}{4}\right)^{n} u(n)
$$

(ii) Find the frequency response of the output $\mathrm{y}(\mathrm{j} \omega)$, and $\mathrm{y}(\mathrm{n})$.
4. Find the Z-transform of the signal $g(n)=|n| a^{|n|}$. Also find the ROC.

UPSC - ELECTRICL Engineering optional - 2020 Questions

1. Sketch the continuous-time signal $x(t)=t[u(-t+1)-u(-t-1)]$ over a suitable range of t, where $u(t)$ is a unit step function.
2. The unit-impulse response of a linear time-invariant continuous-time system is given by

$$
h(t)=\left[3 e^{-3 t}+2 t e^{-3 t}\right] u(t) \text {. Determine the system response } y(t) \text { for an input }
$$ $x(t)=10 e^{-3 t} u(t)$, where $u(t)$ is a step function is

3. Find the Z transform of discrete sequence $x[n]=n[u[n]-u[n-4]]$, where $u(n)$ is a unit step sequence.
4. A continuous-time signal $x(t)=\cos (2 \pi 400 t)$ is sampling frequency $f_{s}=1600 \mathrm{~Hz}$.

Obtain the 4-point DFT of the sampled sequence and plot the magnitude and phase spectrum.

UPSC - ELECTRICL Engineering optional - 2021 Questions

1. For the signal shown in Figure 1(b), calculate the total energy of the signal $X(t)$. Also
sketch $y(t)=X(10 t-5)$

Figure 1(b)
2. Compute the convolution $X[n] * h[n]$, where

$$
\begin{align*}
& X[n]=\left(\frac{1}{2}\right)^{-n} u[-n-2] \\
& h[n]=u[n-2] \tag{10M}
\end{align*}
$$

3. Consider the signal $X[t]$ shown in Figure 2(b) below. Represent the signal $X[t]$ in terms of rectangular pulse signal $V(t)$ shown in the same figure.
[10M]

Figure 2(0)
4. A mixer (analog multiplier) is used as a process in some analog communication systems. Two signals $X_{1}(t)$ and $X_{2}(t)$ are mixed to produce the output $y(t)=X_{1}(t) X_{2}(t)$.

If $X_{1}(t)=10 \sin c(10 t)$ and $X_{2}(t)=2 \cos (1000 \pi t)$, then calculate and plot the magnitude of the Fourier transform of output signal. Further, specify and prove the property of Fourier transform used in calculations.
5. Consider a discrete time system with transfer function given by

$$
H(z)=\frac{Y(z)}{R(z)}=\frac{z^{-1}-\frac{1}{2} z^{-2}}{\left(1-z^{-1}+\frac{2}{9} z^{-2}\right)}
$$

Calculate the following:
(i) The impulse response of the system
(ii) The step response of the system with zero initial conditions
(iii) The step response of the system with initial conditions $y[-1]=1$ and $y[-2]=2$

INDIANCIVILS.COM An online IAS Academy

ONLINE LIVE COURSES WE OFFER:

1.MATHEMATICS - OPTIONAL 2.TELUGU LITERATURE -OPTIONAL 3. PHYSICS OPTIONAL 4. ELECTRICAL OPTIONAL

Subscribe to our youtube channel: INDIANCIVLS.COM E-mail : info@indiancivils.com Phone : +91-9000018804 / 9000018827
Facebook : https://www.facebook.com/indiancivilsdotcom

