Electrical

Engineering

- Optional

For IAS (UPSC)

Circuit Theory - 2015-2021

UPSC - ELECTRICAL Engineering optional - 2015 Questions

1.For the circuit shown in Figure, evaluate the current through and the voltage across each element.
[10M]

2. Derive the expressions for instantaneous and average power in a single-phase ac circuit.
[10M]
3. A two-port network has $z_{11}=z_{12}=z_{21}=z_{22}=200 \Omega$. Two such networks are connected in cascade. What are the overall z -parameters of the composite network.
4.In the network shown in Figure, determine the value of current through 1Ω resistance connected between terminals A and B. Verify the answer using superposition theorem also.

Figure

UPSC - ELECTRICAL Engineering optional - 2016 Questions

1. The reduced incidence matrix of an oriented graph is given as

$$
\left[\begin{array}{rrrrr}
0 & -1 & 1 & 0 & 0 \\
0 & 0 & -1 & -1 & -1 \\
-1 & 0 & 0 & 0 & 1
\end{array}\right]
$$

(i) Draw the graph.
(ii) How many trees are possible for this graph?
(iii) Write the tie-set matrix.
2. Two impedances $z_{1}=5 \Omega$ and $z_{2}=\left(5-j X_{c}\right) \Omega$ are connected in parallel and this combination is connected in series with $z_{3}=(6.25+j 1.25) \Omega$. Determine the value of capacitance of X_{C} to achieve resonance if the supply is $100 \mathrm{~V}, 50 \mathrm{~Hz}$.
[10M]
3. For the circuit shown in Fig. 2 (a), find the value of V, if the power dissipation in the load resistance R_{L} is 36 watts:
[20M]

Figure 2(a)
4. Obtain the dotted equivalent circuit for the coupled circuit shown in Fig 3(a) and hence find the voltage across the capacitor:
[20M]

UPSC - ELECTRICAL Engineering optional - 2017 Questions

1. For the circuit shown in Fig 1(a), find the current through 5Ω resistor by using Thevenin's theorem and verify the same by using superposition theorem.
[10M]

चित्र 1(a)/Fig. 1(a)
2. Consider the R-L-C circuit shown in Fig. 3(c), wherein $I_{S}=10 A, R=2 \Omega, L=1 H, C=$ $0.5 \mu F, i_{L}\left(0^{-}\right)=0$

Determine $v\left(0^{+}\right), \frac{d v}{d t}\left(0^{+}\right)$and $\frac{d^{2} v}{d t^{2}}\left(0^{+}\right)$after the switch is closed.

3. Obtain z -parameters of a two-port network in terms of its ABCD parameters.
[10M]
4. Find the value of average current flow through the load resistor for the circuit given in figure 6 (a)
[10M]

Fig. 6(a)
5. A $400-\mathrm{V}, 3$-phase balanced source is connected to an unbalanced Δ-connected load of impedances $\bar{Z}_{a b}=10 \angle+45^{\circ} \Omega, \bar{Z}_{b c}=10 \angle 0^{\circ} \Omega$ and $\bar{Z}_{c a}=10 \angle-45^{\circ} \Omega$. Determine the line currents (in phasor form), total active (real) and reactive powers.
[20M]

UPSC - ELECTRICAL Engineering optional - 2018 Questions

1. Derive the expression of total average power in three-phase balanced circuit.
2.In the circuit shown in Figure 3(c), find the voltage v_{o} across the 8Ω resistor.

Figure 3 (c)
3. Using Thevenin's theorem, find the current through the 40Ω resistor connected between terminals a and b in Figure 5(e).

Figure 5 (e)
4. Find $\mathrm{i}_{\mathrm{o}}(t)$ in the circuit shown in Figure 6(b) using Fourier transform method when $\mathrm{i}_{\mathrm{s}}(t)=10 \sin 2 \mathrm{t} A m p$.
[20M]

5. For the circuit shown in Figure $8(a), v(t)=311.12 \sin 377 t$ volts:
(i) Find the values of $\bar{I}_{1}, \bar{I}_{2}, \bar{I}_{3}, \bar{I}_{4}$ and \bar{I}_{5}.
(ii) Also compute $\overline{\mathrm{V}}_{\mathrm{bc}}$ and $\overline{\mathrm{V}}_{\mathrm{cd}}$.
(iii) Compute the power supplied by the source.
(iv) Find the line power factor.

UPSC - ELECTRICAL Engineering optional - 2019 Questions

1. In the network shown in Figure 1(a), determine the following:
(i) The value of the load resistance to have maximum power transfer
(ii) The maximum power delivered to the load.

Figure 1(a)
2. Determine the expressions of currents i_{1} and i_{2} in time domain for the circuit shown in

Figure 2 (a).
[20M]

Figure 2 (a)
3. Determine current $\mathrm{i}(\mathrm{t})$ in the circuit of Figure 3(d), for all values of time.

Figure 3 (d)
4. A balanced three-phase supply system with a line voltage of 400 V is supplying a balanced Y-connected load with 1500 W at a leading power factor of 0.8 . Determine the line current and the per phase load impedance. Now, a balanced 900 W lighting load is added in parallel to the system. What will be the new line current?

UPSC - ELECTRICAL Engineering optional - 2020 Questions

1. The switch shown in Figure 1(a) has been closed for a very long time and it is opened at time $t=0$.
(i) Find the value of i_{L} for $t<0$.
(ii) Just after the switch is opened, find the value of $i_{L}\left(0^{+}\right)$.
(iii) Determine the expression for $i_{L}(t)$ for $t>0$ and find the value of $i_{L}(\infty)$.

Figure 1(a)
2. Find the h-parameters of the two-port circuit shown in Figure 2a. If the input contains a source voltage with series resistance of 200Ω, find the output impedance $\left(Z_{\text {out }}\right)$ of the circuit.

Figure 2(a)
3. Let $\omega=1000 \mathrm{rad} / \mathrm{sec}$ for the circuit of Figure 3 b and determine the value of the ratio
$\mathrm{V}_{0} / \mathrm{V}_{\mathrm{s}}, \mathrm{L}_{1}=1 \mathrm{mH}, \mathrm{L}_{2}=25 \mathrm{mH}$ and $k=1$.
[10M]

Figure 3(b)
4. An electrical network is fed by two ac sources, as shown in Figure 3b(ii). Given that
$Z_{1}=(1-j) \Omega, Z_{2}=(1+j) \Omega$ and $Z_{L}=(1+j 0) \Omega$.

Figure 3(b)(ii)
5. Find the values of branch currents $\mathrm{I}_{\mathrm{a}}, \mathrm{I}_{\mathrm{b}}$, and I_{c} as indicated in the circuit of Figure 5(e).
[10M]

Figure 5(e)

UPSC - ELECTRICAL Engineering optional - 2021 Questions

1. In Figure 1(a) shown below, the two-port network is characterized in terms of y-parameters with $y_{11}=3.3 \times 10^{-3} \mathrm{~S}, y_{22}=5 \times 10^{-3} \mathrm{~S}$ and $y_{12}=y_{21}=0$. Find the voltage across 200Ω load.

Figure $1(\bar{a})$
2. Find the Thevenin's equivalent of the circuit shown in Figure 2(a) below as seen from the load impedance Z_{L}. Also find the value of Z_{L} for maximum power transfer.

Figure 2(a)
3. For the circuit shown in Figure 3(b), calculate the voltage $V_{0}(t)$ as function of time,,[20M]

Figure 3(b)
Where $V(t)=10 \sin \left(6 t+60^{\circ}\right) V$ and $I(t)=5 \cos \left(4 t+30^{\circ}\right) A$.
4. For the circuit shown in Figure $5(\mathrm{e}), \mathrm{v}_{\mathrm{C}}(0+)=2 \mathrm{~V}$ and $\mathrm{i}(0+)=\frac{2}{3} \mathrm{~A}$. Calculate the value of $v_{C}(t)$ for $t>0$.
[10M]

Figure 5(e)

INDIANCIVILS.COM An online IAS Academy

ONLINE LIVE COURSES WE OFFER:

1.MATHEMATICS - OPTIONAL 2.TELUGU LITERATURE -OPTIONAL 3. PHYSICS OPTIONAL 4. ELECTRICAL OPTIONAL

Subscribe to our youtube channel: INDIANCIVLS.COM E-mail : info@indiancivils.com Phone : +91-9000018804 / 9000018827
Facebook : https://www.facebook.com/indiancivilsdotcom

