

Circuit Theory - 2015-2021

INDIANCIVILS.COM - 90000 18804

UPSC – ELECTRICAL Engineering optional – 2015 Questions

1.For the circuit shown in Figure, evaluate the current through and the voltage across each element. [10M]

- 2. Derive the expressions for instantaneous and average power in a single-phase ac circuit.

 [10M]
- 3. A two-port network has $z_{11} = z_{12} = z_{21} = z_{22} = 200\Omega$. Two such networks are connected in cascade. What are the overall z-parameters of the composite network.

[10M]

4.In the network shown in Figure, determine the value of current through 1 Ω resistance connected between terminals A and B. Verify the answer using superposition theorem also. [20M]

UPSC – ELECTRICAL Engineering optional – 2016 Questions

1. The reduced incidence matrix of an oriented graph is given as

[10M]

$$\begin{bmatrix} 0 & -1 & 1 & 0 & 0 \\ 0 & 0 & -1 & -1 - 1 \\ -1 & 0 & 0 & 0 & 1 \end{bmatrix}$$

- (i) Draw the graph.
- (ii) How many trees are possible for this graph?
- (iii) Write the tie-set matrix.
- 2. Two impedances $z_1 = 5\Omega$ and $z_2 = (5 jX_c)\Omega$ are connected in parallel and this combination is connected in series with $z_3 = (6.25 + j1.25)\Omega$. Determine the value of capacitance of X_C to achieve resonance if the supply is 100 V, 50 Hz. [10M]
- 3. For the circuit shown in Fig.2 (a), find the value of V, if the power dissipation in the load resistance R_L is 36 watts: [20M]

4. Obtain the dotted equivalent circuit for the coupled circuit shown in Fig 3(a) and hence find the voltage across the capacitor: [20M]

UPSC – ELECTRICAL Engineering optional – 2017 Questions

1. For the circuit shown in Fig 1(a), find the current through 5Ω resistor by using Thevenin's theorem and verify the same by using superposition theorem. [10M]

2. Consider the R-L-C circuit shown in Fig. 3(c), wherein $I_S=10A$, $R=2\Omega$, L=1 H, C=0.5 μF , $i_L(0^-)=0$

Determine $v(0^+)$, $\frac{dv}{dt}(0^+)$ and $\frac{d^2v}{dt^2}(0^+)$ after the switch is closed. [10M]

- 3. Obtain z-parameters of a two-port network in terms of its ABCD parameters. [10M]
- **4.** Find the value of average current flow through the load resistor for the circuit given in figure 6 (a) [10M]

5. A 400-V, 3-phase balanced source is connected to an unbalanced Δ -connected load of impedances $\bar{Z}_{ab} = 10 \angle + 45^{\circ}\Omega$, $\bar{Z}_{bc} = 10 \angle 0^{\circ}\Omega$ and $\bar{Z}_{ca} = 10 \angle - 45^{\circ}\Omega$. Determine the line currents (in phasor form), total active (real) and reactive powers. [20M]

UPSC – ELECTRICAL Engineering optional – 2018 Questions

- 1. Derive the expression of total average power in three-phase balanced circuit. [10M]
- **2.**In the circuit shown in Figure 3(c), find the voltage v_0 across the 8 Ω resistor. [10M]

3. Using Thevenin's theorem, find the current through the 40 Ω resistor connected between terminals a and b in Figure 5(e). [10M]

4. Find $i_0(t)$ in the circuit shown in Figure 6(b) using Fourier transform method when $i_s(t) = 10 \sin 2t$ Amp. [20M]

5. For the circuit shown in Figure 8(a), $v(t) = 311.12 \sin 377t$ volts:

[20M]

- (i) Find the values of \bar{I}_1 , \bar{I}_2 , \bar{I}_3 , \bar{I}_4 and \bar{I}_5 .
- (ii) Also compute $\,\overline{V}_{bc}\,$ and $\,\overline{V}_{cd}.$
- (iii) Compute the power supplied by the source.
- (iv) Find the line power factor.

UPSC – ELECTRICAL Engineering optional – 2019 Questions

- 1. In the network shown in Figure 1(a), determine the following:
 - (i) The value of the load resistance to have maximum power transfer
 - (ii) The maximum power delivered to the load.

[10M]

2. Determine the expressions of currents i_1 and i_2 in time domain for the circuit shown in Figure 2 (a). [20M]

3. Determine current i(t) in the circuit of Figure 3(d), for all values of time.

[10M]

4. A balanced three-phase supply system with a line voltage of 400 V is supplying a balanced Y-connected load with 1500 W at a leading power factor of 0.8. Determine the line current and the per phase load impedance. Now, a balanced 900 W lighting load is added in parallel to the system. What will be the new line current? [10M]

UPSC – ELECTRICAL Engineering optional – 2020 Questions

- 1. The switch shown in Figure 1(a) has been closed for a very long time and it is opened at time t = 0. [10M]
 - (i) Find the value of i_L for t < 0.
 - (ii) Just after the switch is opened, find the value of $i_L(0^+)$.
- (iii) Determine the expression for $i_L(t)$ for t > 0 and find the value of $i_L(\infty)$.

2. Find the h-parameters of the two-port circuit shown in Figure 2a. If the input contains a source voltage with series resistance of 200Ω , find the output impedance (Z_{out}) of the circuit. [10M]

3. Let $\omega = 1000$ rad/sec for the circuit of Figure 3b and determine the value of the ratio V_0/V_s , $L_1 = 1$ mH, $L_2 = 25$ mH and k = 1. [10M]

4. An electrical network is fed by two ac sources, as shown in Figure 3b(ii). Given that $Z_1 = (1-j)\Omega$, $Z_2 = (1+j)\Omega$ and $Z_L = (1+j0)\Omega$. [10M]

5. Find the values of branch currents I_a , I_b , and I_c as indicated in the circuit of Figure 5(e). [10M]

UPSC – ELECTRICAL Engineering optional – 2021 Questions

1. In Figure 1(a) shown below, the two-port network is characterized in terms of y-parameters with $y_{11}=3.3\times 10^{-3} \mathrm{S}$, $y_{22}=5\times 10^{-3} \mathrm{S}$ and $y_{12}=y_{21}=0$. Find the voltage across 200Ω load. [10M]

Find the Thevenin's equivalent of the circuit shown in Figure 2(a) below as seen from the load impedance Z_L. Also find the value of Z_L for maximum power transfer. [20M]

3. For the circuit shown in Figure 3(b), calculate the voltage $V_0(t)$ as function of time, [20M]

Where $V(t) = 10 \sin(6t + 60^{\circ})V$ and $I(t) = 5 \cos(4t + 30^{\circ})A$.

4. For the circuit shown in Figure 5(e), $v_C(0+) = 2 \text{ V}$ and $i(0+) = \frac{2}{3} \text{A}$. Calculate the value of $v_C(t)$ for t > 0. [10M]

INDIANCIVILS.COM

An online IAS Academy

ONLINE LIVE COURSES WE OFFER:

- 1.MATHEMATICS OPTIONAL
- 2.TELUGU LITERATURE -OPTIONAL
- 3. PHYSICS OPTIONAL
- 4. ELECTRICAL OPTIONAL

Subscribe to our youtube channel: INDIANCIVLS.COM

E-mail: info@indiancivils.com

Phone: +91-9000018804 / 9000018827

Facebook: https://www.facebook.com/indiancivilsdotcom